
1

Coming Soon to the Coming Soon to the
AP Computer Science ExamAP Computer Science Exam

David Reed
Creighton University, Omaha, NE

davereed@creighton.edu

Ann Shen
Bishop Strachan School, Toronto, Ontario

AShen@bss.on.ca

Laurie White
Mercer University, Macon, GA

white_la@mercer.edu

2

AgendaAgenda
recent changes in AP Computer Science

changes for 2007 exam:
new Java 5.0 features in subset
motivation, examples, what you need to know

changes for 2008 exam:
new case study (GridWorld)
motivation, examples, what you need to know

changes for 2009 and beyond:
???

2

3

Recent ChangesRecent Changes

2003: greater emphasis on student "design"
design/implement a class given specifications (2003 AB4)
design/implement classes using inheritance and interfaces
(2004 A2 & AB1, 2005 A2, 2006 A2 & AB2)
design/implement/analyze data structures given specifications
(2005 AB2)

2004: switch to Java as programming language
much stronger emphasis on OO concepts
use of standard Collection classes: ArrayList, LinkedList, Set, Map,…
Java Marine Biology Simulation Case Study

4

For 2007: Java 5.0 Features in SubsetFor 2007: Java 5.0 Features in Subset

Java 5.0 (a.k.a. 1.5) was released in September, 2004
introduced significant new features, including generics
many were immediately adopted by CS texts, college courses

APCS Development Committee has taken a conservative
approach to adopting features

is the benefit worth requiring all AP teachers to include it?
will the feature make it easier to write/answer exam questions?

note: the APCS Java subset merely defines the testable features
a teacher can still teach features not included in the APCS Java subset
a student can use features from outside the subset on the exam

3

5

Java 5.0 Features in the SubsetJava 5.0 Features in the Subset

use of generic collections
provide compile-time type safety for collections and eliminate
the need for most typecasts

enhanced for loop (a.k.a. for-each loop)
simpler syntax for iterating over each member of an array or
collection

standardized Stack, Queue, and PriorityQueue
generic classes for Stack and PriorityQueue, interface for
Queue

6

IN: Generic CollectionsIN: Generic Collections
in Java 1.4, collections (e.g., ArrayList, Set) held Objects

Set names = new TreeSet();
…
Iterator iter = names.iterator();
while (iter.hasNext()) {

System.out.println(((String)iter.next()).toUpperCase());
}

Java 5.0 introduced generics (similar to C++ templates)
more transparent data structure w/ compile-time type checking
less casting required

Set<String> names = new TreeSet<String>();
…
Iterator<String> iter = names.iterator();
while (iter.hasNext()) {

System.out.println(iter.next().toUpperCase());
}

4

7

Generic Collections (cont.)Generic Collections (cont.)
generic collection classes will yield better exam questions

e.g., consider part of a class from the 2005 AB exam
public class PostalCodeDB
{ // each key is a postal code,

private Map codeToCityMap; // its associated value is
// a set of cities

public PostalCodeDB()
{

codeToCityMap = new HashMap();
}

data structures can be stated less ambiguously using generics
public class PostalCodeDB
{

private Map<String, Set<String>> codeToCityMap;

public PostalCodeDB()
{

codeToCityMap = new HashMap<String, Set<String>>();
}

8

Use but NOT WriteUse but NOT Write
students must be able to use but not write generic classes,

writing generic classes can get very messy very quickly
public class TreeNode<E> {…}

vs.
public class TreeNode<E extends Comparable<E>> {…}

vs.
public class TreeNode<E extends Comparable<? super E>> {…}

it was decided that having to explain the intricacies of type
parameters and wild cards was not worth it (for the exam)

ListNode and TreeNode will remain non-generic
the Comparable interface will be used, not Comparable<E>

5

9

Generics vs. NonGenerics vs. Non--genericsgenerics

students must still be able to read and use non-generic code
when using ListNode, TreeNode, or Comparable
when using the MBS case study (for 2007)

students should be comfortable with casting, since examples
may appear in Multiple Choice or Free Response code

however, if they fail to cast when accessing a non-generic
collection in a Free Response answer, this is still considered a
non-penalized error

10

IN: Enhanced For LoopIN: Enhanced For Loop
Java 5.0 introduced the enhanced for loop (a.k.a. for-each)

cleaner, more abstract notation for accessing each element of
an array or collection
ArrayList productList = new ArrayList();
…
double totalCost = 0.0;
for (int i = 0; i < productList.size(); i++) {

totalCost += ((Product)productList.get(i)).getPrice();
}

vs.
ArrayList<Product> productList = new ArrayList<Product>();
…
double totalCost = 0.0;
for (Product p : productList) {

totalCost += p.getPrice();
}

from 2006 A2

6

11

Enhanced For Loop (cont.)Enhanced For Loop (cont.)

public Set removeSynonym(String syn)
{

Set affectedWords = new TreeSet();
Set allWords = wordMap.keySet();

Iterator iter = allWords.iterator();
while (iter.hasNext()) {

String nextWord = (String)iter.next();
Set synonyms = (Set)wordMap.get(nextWord);
if (synonyms.remove(syn)) {

affectedWords.add(nextWord);
}

}
return affectedWords;

} for (String nextWord : allWords) {

the enhanced for loop provides a consistent access pattern for
arrays and collections

it also reduces the need for iterators

from 2006 AB1

can replace all
three lines with
a single line

12

Enhanced For Loop (cont.)Enhanced For Loop (cont.)
note: students still need to know indexing and iterators

the enhanced for loop won't help if you want to skip elements,
access in a different order, or insert/remove/replace elements
while traversing

public void clearConflicts(Appointment appt)
{

for (int i = apptList.size()-1; i >= 0; i--)
if (appt.conflictsWith((Appointment)apptList.get(i))) {

apptList.remove(i);
}

}
}

while the enhanced for loop is fine for many simple traversals,
students must recognize when indexing or an iterator is needed

from 2006 A1

7

13

IN: Stack, Queue, IN: Stack, Queue, PriorityQueuePriorityQueue
starting in 2007, the exam will use standard Java collections

the use of AP-specific interfaces for Stack, Queue & PriorityQueue
was confusing and often conflicted with standard Java classes
the java.util versions provide a more standard implementation

java.util.Stack<E>: push, pop, peek, isEmpty
Stack<String> stk = new Stack<String>();

interface java.util.Queue<E>: add, remove, peek, isEmpty
Queue<String> q = new LinkedList<String>();

class java.util.PriorityQueue<E>: add, remove, peek, isEmpty
PriorityQueue<String> pq = new PriorityQueue<String>();

14

Stack, Queue, Stack, Queue, PriorityQueuePriorityQueue (cont.)(cont.)

DANGER: Stack & Queue provide non-standard functionality
since derived from existing classes/interfaces, they provide
methods beyond the classic stack & queue operations

Stack<String> names = new Stack<String>();
names.push("Ann");
names.push("Dave");
names.push("Laurie");
…
names.remove("Dave"); // perfectly legal since these
… // methods are inherited from
names.add(1, "Gail"); // the Vector class

to test mastery of these abstract data structures, Free Response
questions will explicitly limit students to (push, pop, peek, isEmpty)
and (add, remove, peek, isEmpty), respectively

8

15

Minor Subset ChangesMinor Subset Changes
the Random class has been removed from the subset

replaced by the general-purpose Math.random
expression range
Math.random() [0.0, 1.0)
Math.random()*high [0.0, high)
(int)(Math.random()*high) 0..high-1
(int)(Math.random()*(high-low+1)+low) low..high

for AB, 2 methods have been added to the List interface
both were previously listed in the ArrayList class
void add(int index, E obj)

E remove(int index)

16

OUT: OUT: Autoboxing/unboxingAutoboxing/unboxing
after much debate, autoboxing/unboxing was NOT included

does allow for primitives to be easily stored in collections
Map<String, Integer> words = new HashMap<String, Integer>();
words.put("foo", new Integer(0));
…
words.put("foo", new Integer(words.get("foo").intValue()+1));

vs.
Map<String, Integer> words = new HashMap<String, Integer>();
words.put("foo", 0);
…
words.put("foo", words.get("foo")+1);

while beneficial, there are many subtle conversion rules
applications requiring autoboxing/unboxing can easily be avoided
since not needed for the exam, it will not be required

9

17

OUT: Other Java 5.0 AdditionsOUT: Other Java 5.0 Additions
while potentially useful, other features are not central to APCS

● Scanner, printf (note: subset does not include any input methods)
Scanner input = new Scanner(System.in);
while (input.hasNext()) {

String word = input.next();
System.out.printf("%10s: %2d\n", word, word.length());

}

● type-safe enumerations
public enum Response { YES, NO, UNLIKELY, PROBABLY };

● methods with variable arguments
public static double average(double... values)
{

double sum = 0;
for (double v : values) sum += v;
return sum / values.length;

}

● static imports, annotations, …

18

Again: OUT Again: OUT !=!= BADBAD

just because a feature is not included in the APCS subset
doesn't mean it's bad or that teachers shouldn't cover it

it simply means those features will not be tested on the exam
it is expected that teachers will cover some of these features

e.g., Scanner, printf, simple autoboxing/unboxing
students are free to use any of these feature in writing free
response solutions

caveat: readers are human, so esoteric code runs a risk

some features (e.g., autoboxing/unboxing) may be revisited
as college practices become more uniform

10

19

FYIFYI

see Cay Horstmann's article on AP Central for more
detailed information and examples

Teaching with Tiger: Using Java 5.0 Features in AP
Computer Science Courses, by Cay Horstmann

http://apcentral.collegeboard.com/members/article/1,3046,15
1-165-0-49154,00.html

20

For 2008: GridWorld Case StudyFor 2008: GridWorld Case Study

Fourth major reworking of the case study.
GridWorld goes back to basics, serving as a code

framework for test questions.
As a result, GridWorld is significantly smaller than MBS.
GridWorld is designed to be more flexible and easier to use

earlier in the course.
Less material is provided by the committee, more is

expected from the community.

11

21

Lessons Learned from MBSLessons Learned from MBS

visual framework is very motivating
classes were flexible; supported many exam questions
teachers took advantage of extension points
complexity was a drawback

themes for new case study
continuity
simplicity
testability
extensibility

22

OverviewOverview
framework derived from MBS (GNU license!)
fewer classes/interfaces: 4 (A) / 7 (AB) implementations, 5 API's
simplified API: easier to remember, easier to formulate questions
layers: use framework at multiple points in your course
much easier to add your own classes

public
classes

12

23

Layer 1: ObjectsLayer 1: Objects
turtle-like graphics: bug drops flowers direct manipulation (like in BlueJ)

Can be used as early motivation for objects

24

Layer 1: ObjectsLayer 1: Objects

a first look at GridWorld
exploring Actor state and behavior
demo:

Bug (testable code)

13

25

Layer 2: InheritanceLayer 2: Inheritance

simple inheritance
three basic methods:

canMove()
move()
turn()

demo:
BoxBug (testable code)

26

Layer 3: Interacting ObjectsLayer 3: Interacting Objects

uses template method, like Fish.act
override methods to define how critters find neighbors

find neighbors
process neighbors
find candidates for move locations
select a move location
make a move

clean and simple behavior, less randomness than MBS

14

27

Layer 3: Interacting ObjectsLayer 3: Interacting Objects

demo:
ChameleonCritter (testable code)
CrabCritter (extra demo code)

28

Layer 4: Data StructuresLayer 4: Data Structures

little change from MBS

uses generics

Grid<E> similar to Map<Location, E>

can contain any type, not just Locatable

AbstractGrid example of abstract class

AB Material

15

29

TestabilityTestability

Bug subclasses lend themselves to multiple choice
questions:

e.g., "Which pattern does MysteryBug produce?"

Critter subclasses are easily understood
e.g., no confusing breed/die issues

Grid useful for a wide variety of questions

30

ExtensibilityExtensibility

to add new actor, simply supply subclass and GIF image

image is colored and rotated automatically

easy to do game worlds (e.g. Memory, Sudoku)

extensions are optional

16

31

An Extension An Extension -- TileGameTileGame

32

An Extension An Extension -- GameOfLifeGameOfLife

17

33

An Extension An Extension -- SudokuSudoku

34

An Extension An Extension -- APACWorldAPACWorld

18

35

ScheduleSchedule

code and narrative finalized at APCS Development
Committee winter meeting

"Fresh Eyes" review Spring 2006
sign up at http://gridworld.info

open to the public Fall 2006
first use in 2008 exam

as always, schedule may change...
watch AP mailing list, AP Central for announcements

36

For 2009: ???For 2009: ???
a college survey is planned for 2006-2007

will assess current practices and their demands of AP students
potentially, could affect the required topics in the APCS curriculum

it is hoped that the size of the A and AB curricula could be reduced
many OO/Java features have been added, few concepts removed
currently, the APCS curricula contain more material than most colleges

call for discussion:
what Java/programming features could be moved from A to AB?
what Java/programming features could be removed from AB?

