
1

1

CSC 221: Computer Programming I

Fall 2006

Conditionals, expressions & modularization
� if statements, if-else
� increment/decrement, arithmetic assignments
� mixed expressions
� type casting
� abstraction, modularization
� internal vs. external method calls
� primitives vs. objects

2

Conditional execution
so far, all of the statements in methods have executed unconditionally

� when a method is called, the statements in the body are executed in sequence
� different parameter values may produce different results, but the steps are the same

many applications require conditional execution
� different parameter values may cause different statements to be executed

example: consider the CashRegister class
� previously, we assumed that method parameters were "reasonable"

i.e., user wouldn't pay or purchase a negative amount
user wouldn't check out unless payment amount ≥ purchase amount

� to make this class more robust, we need to introduce conditional execution
i.e., only add to purchase/payment total IF the amount is positive

only allow checkout IF payment amount ≥ purchase amount

2

3

If statements

in Java, an if statement allows for conditional execution
� i.e., can choose between 2 alternatives to execute

if (perform some test) {
Do the statements here if the test gave a true result

}
else {

Do the statements here if the test gave a false result
}

public void recordPurchase(double amount) {
if (amount > 0) {

this.purchase = this.purchase + amount;
}
else {

System.out.println("ILLEGAL PURCHASE");
}

}

if the test evaluates to true
(amount > 0), then this statement
is executed

otherwise (amount <= 0), then this
statement is executed to alert the
user

4

If statements (cont.)

you are not required to have an else case to an if statement
� if no else case exists and the test evaluates to false, nothing is done
� e.g., could have just done the following

public void recordPurchase(double amount) {
if (amount > 0) {

this.purchase = this.purchase + amount;
}

}

but then no warning to user if a negative amount were entered (not as nice)

standard relational operators are provided for the if test
< less than > greater than
<= less than or equal to >= greater than or equal to
== equal to != not equal to

a comparison using a relational operator is known as a Boolean expression,
since it evaluates to a Boolean (true or false) value

3

5

In-class exercises

update recordPurchase to display an error message if attempt to
purchase a negative or zero amount

public void recordPurchase(double amount) {
if (amount > 0) {

this.purchase = this.purchase + amount;
}
else {

System.out.println("ILLEGAL PURCHASE");
}

}

similarly, update enterPayment

6

In-class exercises
what changes should be made to giveChange?

public double giveChange() {
if () {

double change = this.payment – this.purchase;

this.purchase = 0;
this.payment = 0;

return change;
}
else {

}
}

note: if a method has a non-void return type, every possible execution
sequence must result in a return statement
� the Java compiler will complain otherwise

4

7

A further modification

suppose we wanted to add to the functionality of CashRegister
� get the number of items purchased so far
� get the average cost of purchased items

ADDITIONAL FIELDS?

CHANGES TO CONSTRUCTOR?

NEW METHODS?

8

Shorthand assignments
a variable that is used to keep track of how many times some event occurs

is known as a counter
� a counter must be initialized to 0, then incremented each time the event occurs
� incrementing (or decrementing) a variable is such a common task that Java that

Java provides a shorthand notation
number++; is equivalent to number = number + 1;

number--; is equivalent to number = number - 1;

other shorthand assignments can be used for updating variables
number += 5; ≡ number = number + 5; number -= 1; ≡ number = number - 1;

number *= 2; ≡ number = number * 2; number /= 10; ≡ number = number / 10;

public void recordPurchase(double amount) {
if (amount > 0) {

this.purchase += amount;
}
else {

System.out.println("ILLEGAL PURCHASE");
}

}

5

9

Mixed expressions
note that when you had to calculate the average purchase amount, you

divided the purchase total (double) with the number of purchases (int)
� mixed arithmetic expressions involving doubles and ints are acceptable
� in a mixed expression, the int value is automatically converted to a double and the

result is a double

2 + 3.5 Æ 2.0 + 3.5 Æ 5.5

120.00 / 4 Æ 120.00 / 4.0 Æ 30.0

5 / 2.0 Æ 2.5

� however, if you apply an operator to two ints, you always get an int result

2 + 3 Æ 5

120 / 4 Æ 30

5 / 3 Æ 2 ???
CAREFUL: integer division throws away
the fraction

10

Die revisited
extend the Die
class to keep track
of the average roll
� need a field to keep

track of the total
� initialize the total in

the constructors
� update the total on

each roll
� compute the

average by dividing
the total with the
number of rolls

public class Die {
private int numSides;
private int numRolls;
private int rollTotal;

public Die() {
this.numSides = 6;
this.numRolls = 0;
this.rollTotal = 0;

}

public Die(int sides) {
this.numSides = sides;
this.numRolls = 0;
this.rollTotal = 0;

}

public int getNumberOfSides() {
return this.numSides;

}

public int getNumberOfRolls() {
return this.numRolls;

}

public double getAverageOfRolls() {
return this.rollTotal/this.numRolls;

}

public int roll() {
this.numRolls++;

int currentRoll = (int)(Math.random()*this.numSides + 1);
this.rollTotal += currentRoll;

return currentRoll;
}

}

PROBLEM: since rollTotal
and numRolls are both ints,
integer division will be used

• avg of 1 & 2 will be 1

UGLY SOLUTION: make
rollTotal be a double

• kludgy! it really is an int

6

11

Type casting
a better solution is to
keep rollTotal as
an int, but cast it to a
double when needed
� casting tells the

compiler to convert
from one compatible
type to another

� general form:
(NEW_TYPE)VALUE

� if rollTotal is 3, the
expression
(double)rollTotal

evaluates to 3.0

public class Die {
private int numSides;
private int numRolls;
private int rollTotal;

public Die() {
this.numSides = 6;
this.numRolls = 0;
this.rollTotal = 0;

}

public Die(int sides) {
this.numSides = sides;
this.numRolls = 0;
this.rollTotal = 0;

}

public int getNumberOfSides() {
return this.numSides;

}

public int getNumberOfRolls() {
return this.numRolls;

}

public double getAverageOfRolls() {
return (double)this.rollTotal/this.numRolls;

}

public int roll() {
this.numRolls++;

int currentRoll = (int)(Math.random()*this.numSides + 1);
this.rollTotal += currentRoll;

return currentRoll;
}

}

you can cast in the other
direction as well (from a
double to an int)

• any fractional part is lost

• if x is 3.7 Æ (int)x
evaluates to 3

12

Complex expressions
how do you evaluate an expression like 1 + 2 * 3 and 8 / 4 / 2

Java has rules that dictate the order in which evaluation takes place
� * and / have higher precedence than + and –, meaning that you evaluate the part

involving * or / first

1 + 2 * 3 Æ 1 + (2 * 3) Æ 1 + 6 Æ 7

� given operators of the same precedence, you evaluate from left to right

8 / 4 / 2 Æ (8 / 4) / 2 Æ 2 / 2 Æ 1

3 + 2 – 1 Æ (3 + 2) – 1 Æ 5 – 1 Æ 4

GOOD ADVICE: don't rely on these (sometimes tricky) rules
� place parentheses around sub-expressions to force the desired order

(3 + 2) – 1 3 + (2 – 1)

7

13

Mixing numbers and Strings
recall that the + operator can apply to Strings as well as numbers

� when + is applied to two numbers, it represents addition: 2 + 3 Æ 5
� when + is applied to two Strings, it represents concatenation: "foo" + "bar" Æ "foobar"
� what happens when it is applied to a String and a number?

when this occurs, the number is automatically converted to a String (by
placing it in quotes) and then concatenation occurs
x = 12;
System.out.println("x = " + x);

� be very careful with complex mixed expressions

System.out.println("the sum is " + 5 + 2);

System.out.println(2 + 5 + " is the sum");

� again, use parentheses to force the desired order of evaluation

System.out.println("the sum is " + (5 + 2));

14

Abstraction
abstraction is the ability to ignore details of parts to focus attention on a

higher level of a problem
� note: we utilize abstraction everyday

do you know how a TV works? could you fix one? build one?
do you know how an automobile works? could you fix one? build one?

abstraction allows us to function in a complex world
� we don't need to know how a TV or car works
� must understand the controls (e.g., remote control, power button, speakers for TV)

(e.g., gas pedal, brakes, steering wheel for car)
� details can be abstracted away – not important for use

the same principle applies to programming
� we can take a calculation/behavior & implement as a method

after that, don't need to know how it works – just call the method to do the job
� likewise, we can take related calculations/behaviors & encapsulate as a class

8

15

Abstraction examples
recall the Die class

� included the method roll, which returned a random roll of the Die

do you remember the formula for selecting a random number from the right range?

WHO CARES?!? Somebody figured it out once, why worry about it again?

SequenceGenerator class
� included the method randomSequence, which returned a random string of letters

you don't know enough to code it, but you could use it!

Circle, Square, Triangle classes
� included methods for drawing, moving, and resizing shapes

again, you don't know enough to code them, but you could use them!

16

Modularization

modularization is the process of dividing a whole into well-defined parts,
which can be built and examined separately, and which interact in well-
defined ways

� early computers were hard to build – started with lots of simple components (e.g.,
vacuum tubes or transistors) and wired them together to perform complex tasks

� today, building a computer is relatively easy – start with high-level modules (e.g.,
CPU chip, RAM chips, hard drive) and plug them together

think Garanimals!

the same advantages apply to programs
� if you design and implement a method to perform a well-defined task, can call it over

and over within the class
� likewise, if you design and implement a class to model a real-world object's behavior,

then you can reuse it whenever that behavior is needed (e.g., Die for random values)

9

17

Code reuse can occur within a class
one method can call another method (a.k.a. an internal method call)

� a method call consists of "this." + method name + any parameter values in
parentheses (as shown in BlueJ when you right-click and select a method to call)

this.MethodName(paramValue1, paramValue2, …);

� calling a method causes control to shift to that method, executing its code

� if the method returns a value (i.e., a return statement is encountered), then that
return value is substituted for the method call where it appears

public class Die {
. . .

public int getNumberOfSides() {
return this.numSides;

}

public int roll() {
this.numRolls = this.numRolls + 1;
return (int)(Math.random()*this.getNumberOfSides() + 1);

}
}

here, could call the
getNumberOfSides
accessor method to get
the # of sides

18

e.g., Singer class

public class Singer {
. . .

public void oldMacDonaldVerse(String animal, String sound) {
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println("And on that farm he had a " + animal + ", E-I-E-I-O");
System.out.println("With a " + sound + "-" + sound + " here, and a " +

sound + "-" + sound + " there, ");
System.out.println(" here a " + sound + ", there a " + sound +

", everywhere a " + sound + "-" + sound + ".");
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println();

}

public void oldMacDonaldSong() {
this.oldMacDonaldVerse("cow", "moo");
this.oldMacDonaldVerse("duck", "quack");
this.oldMacDonaldVerse("sheep", "baa");
this.oldMacDonaldVerse("dog", "woof");

}

. . .

}

when the method has parameters, the values specified in the
method call are matched up with the parameter names by order

• the parameter variables are assigned the corresponding values
• these variables exist and can be referenced within the method
• they disappear when the method finishes executing

the values in the method call are
sometimes referred to as input values or
actual parameters
the parameters that appear in the method
header are sometimes referred to as
formal parameters

10

19

Primitive types vs. object types
primitive types are predefined in Java, e.g., int, double, boolean, char
object types are those defined by classes, e.g., Circle, Die, Singer

� so far, our classes have utilized primitives for fields/parameters/local variables
� as we define classes that encapsulate useful behaviors, we will want to use them in

other classes (e.g., have a Die field within a craps game class)

when you declare a variable of primitive type, memory is allocated for it
� to store a value, simply assign that value to the variable

int x; double height = 72.5;

x = 0;

when you declare a variable of object type, it is NOT automatically created
� to initialize, must call its constructor: OBJECT = new CLASS(PARAMETERS);
� to call a method: OBJECT.METHOD(PARAMETERS) (a.k.a. external method call)

Circle circle1; Die d8 = new Die(8);

circle1 = new Circle(); System.out.println(d8.roll());
circle1.changeColor("red");

20

primitive types vs. object types
internally, primitive and reference types are stored differently

� when you inspect an object, any primitive fields are shown as boxes with values
� when you inspect an object, any object fields are shown as pointers to other objects

� of course, you can further inspect the contents of object fields

we will consider the implications of primitives vs. objects later

11

21

Picture example public class Picture {
private Square wall;
private Square window;
private Triangle roof;
private Circle sun;

. . .

public void draw() {
this.wall = new Square();
this.wall.moveVertical(80);
this.wall.changeSize(100);
this.wall.makeVisible();

this.window = new Square();
this.window.changeColor("black");
this.window.moveHorizontal(20);
this.window.moveVertical(100);
this.window.makeVisible();

this.roof = new Triangle();
this.roof.changeSize(50, 140);
this.roof.moveHorizontal(60);
this.roof.moveVertical(70);
this.roof.makeVisible();

this.sun = new Circle();
this.sun.changeColor("yellow");
this.sun.moveHorizontal(180);
this.sun.moveVertical(-10);
this.sun.changeSize(60);
this.sun.makeVisible();

}
}

recall the Picture class, whose draw
method automated the process of
drawing the picture
� the class has fields for each of the

shapes in the picture (see class
diagram for dependencies)

� in the draw method, each shape is
created by calling its constructor and
assigning to the field

� then, methods are called on the shape
objects to draw the scene

22

TEST 1
will contain a mixture of question types, to assess different kinds of knowledge

� quick-and-dirty, factual knowledge
e.g., TRUE/FALSE, multiple choice similar to questions on quizzes

� conceptual understanding
e.g., short answer, explain code similar to quizzes, possibly deeper

� practical knowledge & programming skills
trace/analyze/modify/augment code either similar to homework exercises

or somewhat simpler

the test will contain several "extra" points
e.g., 52 or 53 points available, but graded on a scale of 50 (hey, mistakes happen ☺)

study advice:
� see online review sheet for outline of topics covered
� review lecture notes (if not mentioned in notes, will not be on test)
� read text to augment conceptual understanding, see more examples & exercises
� review quizzes and homeworks

� feel free to review other sources (lots of Java tutorials online)

