
1

1

CSC 221: Computer Programming I

Fall 2006

repetition & simulations
conditional repetition, while loops
examples: dot race, paper folding puzzle, sequence generator, songs
infinite (black hole) loops
counter-driven repetition, for loops
simulations: volleyball scoring

2

Conditional repetition
running a dot race is a tedious task

you must call step and showStatus repeatedly to see each step in the race

a better solution would be to automate the repetition

in Java, a while loop provides for conditional repetition
similar to an if statement, behavior is controlled by a condition (Boolean test)
as long as the condition is true, the code in the loop is executed over and over

while (BOOLEAN_TEST) {
STATEMENTS TO BE EXECUTED

}

when a while loop is encountered:
• the loop test is evaluated
• if the loop test is true, then

• the statements inside the loop body are executed in order
• the loop test is reevaluated and the process repeats

• otherwise, the loop body is skipped

2

3

Loop examples
int num = 1;
while (num < 5) {

System.out.println(num);
num++;

}

int x = 10;
int sum = 0;
while (x > 0) {

sum += x;
x -= 2;

}
System.out.println(sum);

int val = 1;
while (val < 0) {

System.out.println(val);
val++;

}

4

runRace method

can define a DotRace
method with a while loop
to run the entire race

in pseudocode:
RESET THE DOT POSITIONS
SHOW THE DOTS
while (NO DOT HAS WON) {

HAVE EACH DOT TAKE STEP
SHOW THE DOTS

}

public class DotRace {
private Dot redDot;
private Dot blueDot;
private int goalDistance;

. . .

/**
* Conducts an entire dot race, showing the status
* after each step.
*/

public void runRace() {
this.reset();
this.showStatus();
while (this.getRedPosition() < this.goalDistance &&

this.getBluePosition() < this.goalDistance) {
this.step();
this.showStatus();

}
}

}

3

5

Paper folding puzzle
recall:

if you started with a regular sheet of paper and repeatedly fold it in half, how many
folds would it take for the thickness of the paper to reach the sun?

calls for conditional repetition

start with a single sheet of paper
as long as the thickness is less than the distance to the sun, repeatedly

fold & double the thickness

in pseudocode:

while (this.thickness < DISTANCE_TO_SUN) {
this.thickness *= 2;
this.numFolds++;

}

6

PaperSheet class
public class PaperSheet {

private double thickness; // thickness in inches
private int numFolds; // the number of folds so far

public PaperSheet(double initial) {
this.thickness = initial;
this.numFolds = 0;

}

/**
* Folds the sheet, doubling its thickness as a result
*/

public void fold() {
this.thickness *= 2;
this.numFolds++;

}

/**
* Repeatedly folds the sheet until the desired thickness is reached
* @param goalDistance the desired thickness (in inches)
*/

public void foldUntil(double goalDistance) {
while (this.thickness < goalDistance) {

this.fold();
}

}

public int getNumFolds() {
return this.numFolds;

}
}

4

7

SequenceGenerator class
recall from HW 1:

SequenceGenerator had a method for generating a random sequence
private String seqAlphabet; // field containing available letters

public String randomSequence(int seqLength) {
String seq = "";
int rep = 0;
while (rep < seqLength) {

int index = (int)(Math.random()*this.seqAlphabet.length());
seq = seq + this.seqAlphabet.charAt(index);
rep++;

}
return seq;

}

useful String methods:
int length(); // returns # of chars in String

char charAt(int index); // returns the character at index
// indexing starts at 0
// i.e., 1st char at index 0

note: + will add a char to a String

8

Generating many sequences
for HW1, you added a method that generated and printed 5 sequences

subsequently, cut-and-pasted 20 copies in order to display 100 sequences
public void displaySequences(int seqLength) {

System.out.println(this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength));

}

better solution: use a loop to generate and print an arbitrary number
to be general, add a 2nd parameter that specifies the desired number of sequences

public void displaySequences(int seqLength, int numSequences) {
int rep = 0;
while (rep < numSequences) {

System.out.println(this.randomSequence(seqLength));
rep++;

}
}

5

9

Controlling output

printing one word per line makes it difficult to scan through a large number
better to put multiple words per line, e.g., new line after every 5 words

this can be accomplished using % (the remainder operator)
(x % y) evaluates to the remainder after dividing x by y

e.g., 7 % 2 1 100 % 2 0 13 % 5 3

public void displaySequences(int seqLength, int numSequences) {
int rep = 0;
while (rep < numSequences) {

System.out.print(this.randomSequence(seqLength) + " ");
rep++;

if (rep % 5 == 0) { // if rep # is divisible by 5,
System.out.println(); // then go to the next line

}
}

}

10

100 bottles of Dew

recall the Singer class, which displayed verses of various children's songs
with a loop, we can sing the entire Bottles song in one method call

/**
* Displays the song "100 bottles of Dew on the wall"
*/
public void bottleSong() {

int numBottles = 100;
while (numBottles > 0) {

this.bottleVerse(numBottles, "Dew");
numBottles--;

}
}

6

11

Beware of "black holes"
since while loops repeatedly execute as long as the loop test is true, infinite
loops are possible (a.k.a. black hole loops)

int numBottles = 100;
while (numBottles > 0) {

this.bottleVerse(numBottles, "Dew");
}

PROBLEM?

a necessary condition for loop termination is that some value relevant to the loop
test must change inside the loop

in the above example, numBottles doesn't change inside the loop
if the test succeeds once, it succeeds forever!

is it a sufficient condition? that is, does changing a variable from the loop test
guarantee termination?

NO – "With great power comes great responsibility."
int numBottles = 100;
while (numBottles > 0) {

this.bottleVerse(numBottles, "Dew");
numBottles++;

}

12

Logic-driven vs. counter-driven loops
sometimes, the number of repetitions is unpredictable

loop depends on some logical condition, e.g., roll dice until 7 is obtained

often, however, the number of repetitions is known ahead of time
loop depends on a counter, e.g., show # of random sequences, 100 bottles of beer

int rep = 0;
while (rep < numSequences) {

System.out.println(this.randomSequence(seqLength));
rep++;

}

int numBottles = 100;
while (numBottles > 0) {

this.bottleVerse(numBottles, "Dew");
numBottles--;

}

in general (counting up):
int rep = 0;
while (rep < #_OF_REPS) {

CODE_TO_BE_EXECUTED
rep++;

}

in general (counting down):
int rep = #_OF_REPS;
while (rep > 0) {

CODE_TO_BE_EXECUTED
rep--;

}

7

13

Loop examples:

int numWords = 0;
while (numWords < 20) {

System.out.print("Howdy" + " ");
numWords++;

}

int countdown = 10;
while (countdown > 0) {

System.out.println(countdown);
countdown--;

}
System.out.println("BLASTOFF!");

Die d = new Die();

int numRolls = 0;
int count = 0;
while (numRolls < 100) {

if (d.roll() + d.roll() == 7) {
count++;

}
numRolls++;

}
System.out.println(count);

14

For loops
since counter-controlled loops are fairly common, Java provides a special

notation for representing them
a for loop combines all of the loop control elements in the head of the loop

int rep = 0; for (int rep = 0; rep < NUM_REPS; rep++) {
while (rep < NUM_REPS) { STATEMENTS_TO_EXECUTE

STATEMENTS_TO_EXECUTE }
rep++;

}

execution proceeds exactly as the corresponding while loop
the advantage of for loops is that the control is separated from the statements to be
repeatedly executed
also, since all control info is listed in the head, much less likely to forget something

8

15

Loop examples:

int numWords = 0;
while (numWords < 20) {

System.out.print("Howdy" + " ");
numWords++;

}

int countdown = 10;
while (countdown > 0) {

System.out.println(countdown);
countdown--;

}
System.out.println("BLASTOFF!");

Die d = new Die();

int numRolls = 0;
int count = 0;
while (numRolls < 100) {

if (d.roll() + d.roll() == 7) {
count++;

}
numRolls++;

}
System.out.println(count);

for (int numWords = 0; numWords < 20; numWords++) {
System.out.print("Howdy" + " ");

}

for (int countdown = 10; countdown > 0; countdown--) {
System.out.println(countdown);

}
System.out.println("BLASTOFF!");

Die d = new Die();

int count = 0;
for (int numRolls = 0; numRolls < 100; numRolls++) {

if (d.roll() + d.roll() == 7) {
count++;

}
}
System.out.println(count);

16

Variable scope
recall: the scope of a variable is the section of code in which it exists

for a field, the scope is the entire class definition
for a parameter, the scope is the entire method
for a local variable, the scope begins with its declaration & ends at the end of the
enclosing block (i.e., right curly brace)

public class DiceStuff {
private Die die;

. . .

public void showSevens(int numReps) {
int count = 0;
for (int numRolls = 0; numRolls < numReps; numRolls++) {
if (this.die.roll() + this.die.roll() == 7) {
count++;

}
}
System.out.println(count);

}

. . .
}

if the loop counter is declared in the
header for the loop, its scope is limited
to the loop

same loop counter could be used in
multiple for loops

9

17

Simulations
programs are often used to model real-world systems

often simpler/cheaper to study a model
easier to experiment, by varying parameters and observing the results

dot race is a simple simulation
utilized Die object to simulate random steps of each dot

in 2001, women's college volleyball shifted from sideout scoring (first to 15,
but only award points on serve) to rally scoring (first to 30, point awarded on
every rally). Why?

shorter games?
more exciting games?
fairer games?
more predictable game lengths?

any of these hypotheses is
reasonable – how would we go
about testing their validity?

18

Volleyball simulations
conducting repeated games under different scoring systems may not be

feasible
may be difficult to play enough games to be statistically valid
may be difficult to control factors (e.g., team strengths)
might want to try lots of different scenarios

simulations allow for repetition under a variety of controlled conditions

VolleyballSim class:
must specify the relative strengths of the two teams, e.g., power rankings (0-100)

if team1 = 80 and team2 = 40, then team1 is twice as likely to win any given point

given the power ranking for the two teams, can simulate a point using a Die
must make sure that the winner is probabilistically correct

can repeatedly simulate points and keep score until one team wins
can repeatedly simulate games to assess scoring strategies and their impact

10

19

VolleyballSim class
public class VolleyballSim {

private Die roller; // Die for simulating points
private int ranking1; // power ranking of team 1
private int ranking2; // power ranking of team 2

public VolleyballSim(int team1Ranking, int team2Ranking) {
roller = new Die(team1Ranking+team2Ranking);
ranking1 = team1Ranking;
ranking2 = team2Ranking;

}

public int serve(int team) {
int winner;
if (this.roller.roll() <= this.ranking1) {

winner = 1;
}
else {

winner = 2;
}

System.out.print("team " + team + " serves: team " +
winner + " wins the rally");

return winner;
}

. . .

to simulate a single rally
with correct probabilities

create a Die with # sides
equal to the sums of the
team rankings

e.g., team1 = 60 and team2 =
40, then 100-sided Die

to determine the winner of
a rally, roll the Die and
compare with team1's
ranking

e.g., if roll <= 60, then team1
wins the rally

20

VolleyballSim class

. . .

public int playGame(int winningPoints) {
int score1 = 0;
int score2 = 0;
int servingTeam = 1;

int winner = 0;
while (score1 < winningPoints && score2 < winningPoints) {

winner = this.serve(servingTeam);
if (winner == 1) {

score1++;
servingTeam = 1;

}
else {

score2++;
servingTeam = 2;

}

System.out.println(" (" + score1 + "-" + score2 + ")");
}
return winner;

}
}

to simulate an entire
game

must specify the
number of points
required to win

repeatedly simulate
a rally and keep
track of the points
for each team

assumes that team
1 gets the first serve

DOES THIS CODE
REQUIRE
WINNING BY 2?

11

21

VolleyballSim class
. . .

public int playGame(int winningPoints)
{

int score1 = 0;
int score2 = 0;
int servingTeam = 1;

int winner = 0;
while ((score1 < winningPoints && score2 < winningPoints)

|| (Math.abs(score1 - score2) <= 1)) {
winner = this.serve(servingTeam);
if (winner == 1) {

score1++;
servingTeam = 1;

}
else {

score2++;
servingTeam = 2;

}

System.out.println(" (" + score1 + "-" + score2 + ")");
}
return winner;

}
}

to force winning by
2, must add another
condition to the while
loop – keep playing
if:

neither team has
reached the
required score

OR

their scores are
within 1 of each
other

22

VolleyballStats class
public class VolleyballStats {

public static final int INITIAL_REPS = 10000;
public static final int INITIAL_POINTS = 30;
private int numGames;
private int winPoints;

public VolleyballStats() {
this.numGames = VolleyballStats.INITIAL_REPS;
this.winPoints = VolleyballStats.INITIAL_POINTS;

}

public int getNumberOfGames() {
return this.numGames;

}

public void setNumberOfGames(int newNum) {
this.numGames = newNum;

}

public int getPointsToWin() {
return this.winPoints;

}

public void setPointsToWin(int newNum) {
this.winPoints = newNum;

}

. . .

simulating a large number of
games is tedious if done one at
a time

can define a class to
automate the simulations and
display the results

since the number of games
and points to win will change
less often, store those in fields
with default values

provide accessor and mutator
methods for viewing and
changing these fields

12

23

VolleyballStats class
. . .

/**
* Simulates getNumberOfGames() volleyball games between teams with
* the speciefied power rankings, and displays statistics.
* @param rank1 the power ranking (0..100) of team 1
* @param rank2 the power ranking (0..100) of team 2
*/

public void playGames(int rank1, int rank2) {
VolleyballSim matchup = new VolleyballSim(rank1, rank2);

int team1Wins = 0;
for (int i = 0; i < this.getNumberOfGames(); i++) {

if (matchup.playGame(this.getPointsToWin()) == 1) {
team1Wins++;

}
}

System.out.println("Assuming (" + rank1 + "-" + rank2 +
") rankings over " + this.getNumberOfGames() +
" games to " + this.getPointsToWin() + ":");

System.out.println(" team 1 winning percentage: " +
100.0*team1Wins/this.getNumberOfGames() + "%");

System.out.println();
}

}

to view stats on a
large number of
games,

call playGames
with the desired
team rankings

it creates a
VolleyballSim
object with those
ranking

it loops to
simulate
repeated games
and maintains
stats

finally, displays
the stats nicely

24

BIG PROBLEM!
currently, the serve
and playGame
methods in
VolleyballSim
display info about
each rally

this is nice when
simulating a
single game

it's not nice when
simulating 10,000
games

for now, can
simply comment
out the println
statements

public class VolleyballSim {
. . .

public int serve(int team) {
. . .

// System.out.print("team " + team + " serves: team " +
// winner + " wins the rally");

. . .
}

private int playGame(int winningPoints) {
. . .

// System.out.println(" (" + score1 + "-" + score2 + ")");

. . .
}

}

a better solution would be to add a field that controls whether output
is displayed, e.g.,

if (this.showOutput) {
System.out.println(. . .);

}

13

25

Interesting stats
out of 10,000 games, 30 points to win:

team 1 = 80, team 2 = 80 team 1 wins 50.1% of the time

team 1 = 80, team 2 = 70 team 1 wins 70.6% of the time

team 1 = 80, team 2 = 60 team 1 wins 87.1% of the time

team 1 = 80, team 2 = 50 team 1 wins 96.5% of the time

team 1 = 80, team 2 = 40 team 1 wins 99.7% of the time

CONCLUSION: over 30 points, the better team wins!

26

TEST 2
similar format to TEST 1 (including several "extra" points)

TRUE/FALSE, multiple choice
short answer, explain code
trace/analyze/modify/augment code

expect to be given a class and be asked to
create/initialize an object of that class, call methods on that object, augment

expect to trace code segments involving loops & conditionals

study advice:
see online review sheet for outline of topics covered
review lecture notes (if not mentioned in notes, will not be on test)
read text to augment conceptual understanding, see more examples & exercises
review quizzes and homeworks

feel free to review other sources (lots of Java tutorials online, e.g.,www.javabat.com)

