
1

1

CSC 221: Computer Programming I

Spring 2008

Understanding class definitions
class structure
fields, constructors, methods
parameters
assignment statements
local variables

2

Looking inside classes
recall that classes define the properties and behaviors of its objects

a class definition must:
specify those properties and their types FIELDS
define how to create an object of the class CONSTRUCTOR
define the behaviors of objects METHODS

public class CLASSNAME {
FIELDS

CONSTRUCTOR

METHODS
}

public is a visibility modifier –
declaring the class to be public
ensures that the user (and other
classes) can use this class

fields are optional – only needed if
an object needs to maintain some state

2

3

Fields
fields store values for an object (a.k.a. instance variables)

the collection of all fields for an object define its state
when declaring a field, must specify its visibility, type, and name

private FIELD_TYPE FIELD_NAME;

for our purposes, all fields will be private (accessible to methods, but not to the user)

/**
* A circle that can be manipulated and that draws itself on a canvas.
*
* @author Michael Kolling and David J. Barnes
* @version 15 July 2000
*/

public class Circle {
private int diameter;
private int xPosition;
private int yPosition;
private String color;
private boolean isVisible;

. . .

}

text enclosed in /** */ is a
comment – visible to the user,
but ignored by the compiler.
Good for documenting code.

note that the fields are those
values you see when you Inspect
an object in BlueJ

4

Constructor
a constructor is a special method that specifies how to create an object

it has the same name as the class, public visibility (since called by the user)
public CLASS_NAME(OPTIONAL_PARAMETERS) {

STATEMENTS FOR INITIALIZING OBJECT STATE
}

public class Circle {
private int diameter;
private int xPosition;
private int yPosition;
private String color;
private boolean isVisible;

/**
* Create a new circle at default position with default color.
*/

public Circle() {
this.diameter = 30;
this.xPosition = 20;
this.yPosition = 60;
this.color = "blue";
this.isVisible = false;

}

. . .
}

an assignment statement stores a value in a field

this.FIELD_NAME = VALUE;

here, default values are assigned for a circle

within a method, can refer to fields of the object via

this.FIELD_NAME

the period denotes ownership: you are referring to a
field that belongs to "this" object

note: the 'this.' prefix is optional, but instructive

3

5

Methods

methods implement the behavior of objects
public RETURN_TYPE METHOD_NAME(OPTIONAL_PARAMETERS) {

STATEMENTS FOR IMPLEMENTING THE DESIRED BEHAVIOR
}

public class Circle {
. . .

/**
* Make this circle visible. If it was already visible, do nothing.
*/

public void makeVisible() {
this.isVisible = true;
this.draw();

}

/**
* Make this circle invisible. If it was already invisible, do nothing.
*/

public void makeInvisible() {
this.erase();
this.isVisible = false;

}

. . .
}

void return type specifies no value is returned
by the method – here, the result is shown on the
Canvas

note that one method can "call" another one

this.draw() calls the draw method on this circle

this.erase() calls the erase method on this circle

6

Simpler example: Die class
/**
* This class models a simple die object, which can have any number of sides.
* @author Dave Reed
* @version 1/20/08
*/

public class Die {
private int numSides;
private int numRolls;

/**
* Constructs a 6-sided die object
*/

public Die() {
this.numSides = 6;
this.numRolls = 0;

}

/**
* Constructs an arbitrary die object.
* @param sides the number of sides on the die
*/

public Die(int sides) {
this.numSides = sides;
this.numRolls = 0;

}

. . .

a Die object needs to keep track of its
number of sides, number of times rolled

the default constructor (no parameters)
creates a 6-sided die

can have multiple constructors (with parameters)
• a parameter is specified by its type and name
• a parameter represents a temporary value that

can be used during the methods execution
• note: parameters are not prefixed with "this."

4

7

Simpler example: Die class (cont.)
. . .

/**
* Gets the number of sides on the die object.
* @return the number of sides (an N-sided die can roll 1 through N)
*/

public int getNumberOfSides() {
return this.numSides;

}

/**
* Gets the number of rolls by on the die object.
* @return the number of times roll has been called
*/

public int getNumberOfRolls() {
return this.numRolls;

}

/**
* Simulates a random roll of the die.
* @return the value of the roll (for an N-sided die,
* the roll is between 1 and N)
*/

public int roll() {
this.numRolls = this.numRolls + 1;
return (int)(Math.random()*this.numSides + 1);

}
}

a method that simply provides access to a private field is
known as an accessor method

the roll method calculates a random roll
(details later) and increments the number of rolls

a return statement specifies the value returned by a call to
the method (shows up in a box in BlueJ)

a method that changes the state is a mutator method

8

public class PaperSheet {
private double thickness; // thickness in inches
private int numFolds; // the number of folds so far

/**
* Constructs the PaperSheet object
* @param initial the initial thickness (in inches) of the paper
*/

public PaperSheet(double initial) {
this.thickness = initial;
this.numFolds = 0;

}

/**
* Folds the sheet, doubling its thickness as a result
*/

public void fold() {
this.thickness = 2 * this.thickness;
this.numFolds = this.numFolds + 1;

}

/**
* Repeatedly folds the sheet until the desired thickness is reached
* @param goalDistance the desired thickness (in inches)
*/

public void foldUntil(double goalDistance) {
while (this.thickness < goalDistance) {

this.fold();
}

}

/**
* Accessor method for determining folds
* @return the number of times the paper has been folded
*/

public int getNumFolds() {
return this.numFolds;

}
}

PaperSheet example

5

9

Another example: Singer
/**
* This class can be used to display various children's songs.
* @author Dave Reed
* @version 9/1/06
*/

public class Singer
{
/**
* Constructor for objects of class Singer
*/

public Singer() {
}

/**
* Displays a verse of "OldMacDonald Had a Farm"
* @param animal animal name for this verse
* @param sound sound that the animal makes
*/

public void oldMacDonaldVerse(String animal, String sound) {
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println("And on that farm he had a " + animal + ", E-I-E-I-O");
System.out.println("With a " + sound + "-" + sound + " here, and a " +

sound + "-" + sound + " there, ");
System.out.println(" here a " + sound + ", there a " + sound +

", everywhere a " + sound + "-" + sound + ".");
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println();

}

. . .

a Singer does not have any state, so no
fields are needed

since no fields, constructor has nothing to
initialize (should still have one, though)

System.out.println displays text in a
window – can specify a String, a
parameter name (in which case its value
is displayed), or a combination using +

10

Another example: Singer (cont.)
. . .

/**
* Displays the song "OldMacDonald Had a Farm"
*/

public void oldMacDonaldSong() {
this.oldMacDonaldVerse("cow", "moo");
this.oldMacDonaldVerse("duck", "quack");
this.oldMacDonaldVerse("sheep", "baa");
this.oldMacDonaldVerse("dog", "woof");

}

. . .

}

one method can call another one:
this.METHOD_NAME(PARAMETERS)

again, the "this." prefix is optional, but
instructive (emphasizes that the method is
being called on this object)

when calling a method, the parameter values match up with the parameter names in
the method based on order
this.oldMacDonaldVerse("cow", "moo"); animal = "cow", sound = "moo"

this.oldMacDonaldVerse("meow", "cat"); animal = "meow", sound = "cat"

6

11

HW2: experimentation with SequenceGenerator
add a method to SequenceGenerator class to display 5 random sequences

/**

* Displays 5 random letter sequence of the specified length
* @param seqLength the number of letters in the random sequences
*/
public void displaySequences(int seqLength) {
System.out.println(this.randomSequence(seqLength) + " " +

this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength) + " " +
this.randomSequence(seqLength));

}

copy-and-paste 20 copies of the System.out.println statement so that
the method displays 100 random sequences

Java provides nicer means of doing this, but we will see them later

using this modified class, you will collect data to estimate the numbers of
words with given characteristics

12

Examples from text: Bank Account & Cash Register

simple example: a bank account
fields?
methods?

slightly more complex: a cash register
fields? amount purchased (scanned) so far

amount paid so far
methods? construct a cash register

purchase (scan) an item
pay a set amount
complete the purchase & get change

for now, we will assume the customer is honest
customer will only enter positive amounts, will pay at least as much as purchase

account balance
construct an account (either with no money or a set amount)
deposit a set amount
withdraw a set amount

7

13

CashRegister class

fields: maintain amounts
purchased and paid

constructor: initialize the
fields

methods: ???

/**
* A cash register totals up sales and computes change due.
* @author Dave Reed (based on code by Cay Horstmann)
* @version 1/20/08
*/

public class CashRegister {
private double purchase;
private double payment;

/**
* Constructs a cash register with no money in it.
*/

public CashRegister() {
this.purchase = 0.0;
this.payment = 0.0;

}

...
}

14

CashRegister methods

recordPurchase:
mutator method that
returns adds to the
purchase amount

enterPayment:
mutator method that
returns adds to the amount
paid

giveChange:
mutator method that
returns the change owed
to the customer (and
resets the fields)

. . .

/**
* Records the sale of an item.
* @param amount the price of the item
*/

public void recordPurchase(double amount) {
this.purchase = this.purchase + amount;

}

/**
* Enters the payment received from the customer.
* @param amount the amount of the payment
*/

public void enterPayment(double amount) {
this.payment = this.payment + amount;

}

/**
* Computes the change due and resets the machine
* for the next customer.
* @return the change due to the customer
*/

public double giveChange() {
double change;
change = this.payment – this.purchase;

this.purchase = 0;
this.payment = 0;

return change;
}

}

8

15

Interface view of class
comments that use /** … */ are documentation comments

BlueJ will automatically generate a documentation page from these comments
can view the documentation by selecting Interface from the top-right menu

16

More on assignments
recall that fields are assigned values using an assignment statement

this.FIELD_NAME = VALUE;

field, parameter, method, class, and object names are all identifiers:
can be any sequence of letters, underscores, and digits, but must start with a letter

e.g., amount, recordPurchase, CashRegister, Circle, circle1, …

by convention: class names start with capital letters; all others start with lowercase
when assigning a multiword name, capitalize inner words
avoid underscores (difficult to read in text)

WARNING: capitalization matters, so giveChange and givechange are different!

each field in a class definition corresponds to a data value that must be
stored for each object of that class

when you create an object, memory is set aside to store that value
when you perform an assignment, a value is stored in that memory location

9

17

Variables

fields and parameters are examples of variables
a variable is a name that refers to some value (which is stored in memory)

when you assign a value to a variable, the Java interpreter finds its associated
memory location and stores the value there
if there was already a value there, it is overwritten

this.purchase = 0.0; this.purchase = 25.0;

18

Assignments and expressions
the left-hand side of an assignment must be a variable (field or parameter);
the right-hand can be :

a value (String, int, double, …)
animal = "cow"; // the value on the right-hand side is
this.payment = 0.0; // assigned to and stored in the variable

a variable (parameter or field name)
this.circleColor = color; // value represented by that variable is
this.payment = amount; // assigned to the field

an expression using values, variables, and operators (+, -, *, /)
x = 2 + 3; // can apply operators to values
z = x – y; // or variables
this.num1 = this.num2 + 1;// or a combination

inchesToSun = 93000000.0 * 5280 * 12; // can use more than 1 operator

this.purchase = this.purchase + amount;
// same variable can appear on both sides;
// evaluate expression on right-hand side
// using current value, then assign to left

10

19

More on parameters
recall that a parameter represents a value that is passed in to a method

a parameter is a variable (it refers to a piece of memory where the value is stored)
a parameter "belongs to" its method – only exists while that method executes
using BlueJ, a parameter value can be entered by the user – that value is assigned
to the parameter variable and subsequently used within the method

20

Local variables
fields are one sort of variable

they store values through the life of an object
they are accessible throughout the class

methods can include shorter-lived variables (called local variables)
they exist only as long as the method is being executed
they are only accessible from within the method
local variables are useful whenever you need to store some temporary value (e.g.,
in a complex calculation)

before you can use a local variable, you must declare it
specify the variable type and name (similar to fields, but no private modifier)
int num;
String firstName;

then, can use just like any other variable (assign it a value, print its value, …)

11

21

Local variable example

public double giveChange() {
double change;
change = this.payment – this.purchase;

this.purchase = 0;
this.payment = 0;

return change;
}

you can declare and assign a local variable at the same time
preferable since it ensures you won't forget to initialize
the compiler will complain if you try to access an uninitialized variable

public double giveChange() {
double change = this.payment – this.purchase;

this.purchase = 0;
this.payment = 0;

return change;
}

22

When local variables?

public void oldMacDonaldVerse(String animal, String sound) {
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println("And on that farm he had a " + animal + ", E-I-E-I-O.");
System.out.println("With a " + sound + "-" + sound + " here, and a " +

sound + "-" + sound + " there, ");
System.out.println(" here a " + sound + ", there a " + sound +

", everywhere a " + sound + "-" + sound + ".");
System.out.println("Old MacDonald had a farm, E-I-E-I-O.");
System.out.println();

}

local variables are useful when
you need to store a temporary value (as part of a calculation or to avoid losing it)
you are using some value over and over within a method

recall the oldMacDonaldVerse method from the Singer class
what would have to change if we decided to spell the refrain "Eeyigh-eeyigh-oh" ?

12

23

A better verse…

public void oldMacDonaldVerse(String animal, String sound) {
String refrain = "E-I-E-I-O"; // change the spelling here to affect entire verse

System.out.println("Old MacDonald had a farm, " + refrain + ".");
System.out.println("And on that farm he had a " + animal + ", " + refrain + ".");
System.out.println("With a " + sound + "-" + sound + " here, and a " +

sound + "-" + sound + " there, ");
System.out.println(" here a " + sound + ", there a " + sound +

", everywhere a " + sound + "-" + sound + ".");
System.out.println("Old MacDonald had a farm, " + refrain + ".");
System.out.println();

}

duplication within code is dangerous
if you ever decide to change it, you must change it everywhere!

here, we could use a local variable to store the spelling of the refrain
System.out.println will use this variable as opposed to the actual text
if we decide to change the spelling, only one change is required (in the assignment)

24

Parameters vs. local variables

parameters are similar to local variables
they only exist when that method is executing
they are only accessible inside that method
they are declared by specifying type and name (no private or public modifier)
their values can be accessed/assigned within that method

however, they differ from local variables in that
parameter declarations appear in the header for that method
parameters are automatically assigned values when that method is called (based on
the inputs provided in the call)

parameters and local variables both differ from fields in that they belong to
(and are limited to) a method as opposed to the entire object

13

25

Quick-and-dirty summary
a class definition consists of: fields + constructors + methods

fields are the data values that define the state of an object
private FIELD_TYPE FIELD_NAME;

constructors initialize the state of an object when it is created
a class can have multiple constructors with different parameters to initialize the state differently
in its simplest form, a constructor contains assignments to fields

this.FIELD_NAME = VALUE_TO_BE_ASSIGNED;

methods implement the behaviors or actions for an object
when defining a method, must specify its return type (or void if none) and parameters (if any)
• a return statement is used to return a value computed by the method

return VALUE_TO_BE_RETURNED;

• a print or println statement is used to display text in a console window
System.out.print(TEXT_MESSAGE); System.out.println(TEXT_MESSAGE);

fields & parameters are examples of variables (names that represent values)
fields are variables that belong to an object, accessible by constructors & methods
parameters are variables that are passed in and exist only inside a constructor/method
in addition, local variables can be defined inside constructors/methods for temporary storage

