
1

CSC 222: Object-Oriented Programming

Fall 2015

Inheritance & polymorphism

§  Hunt the Wumpus, enumerated types
§  inheritance, derived classes
§  inheriting fields & methods, overriding fields and methods
§  IS-A relationship, polymorphism
§  super methods, super constructor
§  instanceof, downcasting

Hunt the Wumpus

for HW6, you will implement a
text-based adventure game
from the 1970's
§ you will wander through a series

of caves, with each cave
connected to 3 others via tunnels

§  there are dangers in the caves
•  you can be eaten by a Wumpus
•  you can fall into a bottomless pit
•  you can be picked up and moved

by bats
§  you can sense dangers in

adjacent caves
§  you have a limited number of

grenades you can throw when
you smell a Wumpus

2

Cave class
you must implement a class that models a single cave

§  each cave has a name & number, and is connected to three other caves via tunnels
§  by default, caves are empty & unvisited (although these can be updated)

how do we represent the cave contents?
§  we could store the contents as a string: "EMPTY", "WUMPUS", "BATS", "PIT"

Cave c = new Cave("Cavern of Doom", 0, 1, 2, 3);
c.setContents("WUMPUS");

§  potential problems?

3

there are only 4 possible values for cave contents
§  the trouble with using a String to represent these is the lack of error checking

 c.setContents("WUMPAS"); // perfectly legal, but ???

Enumerated types
there is a better alternative for when there is a small, fixed number of values

§  an enumerated type is a new type (class) whose value are explicitly enumerated

public enum CaveContents {
 EMPTY, WUMPUS, PIT, BATS
}

§  note that these values are NOT Strings – they do not have quotes

§  you specify a enumerated type value by ENUMTYPE.VALUE

c.setContents(CaveContents.WUMPUS);

since an enumerated type has a fixed number of values, any invalid input

would be caught by the compiler

4

CaveMaze
the CaveMaze
class reads in &
stores a maze of
caves
§  provided version

uses an ArrayList
(but could have
used an array)

§  currently, only
allows for moving
between caves

§  you must add
functionality

5

public class CaveMaze {
 private ArrayList<Cave> caves;
 private Cave currentCave;

 public CaveMaze(String filename) throws java.io.FileNotFoundException {
 Scanner infile = new Scanner(new File(filename));

 int numCaves = infile.nextInt();
 this.caves = new ArrayList<Cave>();
 for (int i = 0; i < numCaves; i++) {
 this.caves.add(null);
 }

 for (int i = 0; i < numCaves; i++) {
 int num1 = infile.nextInt();
 int num2 = infile.nextInt();
 int num3 = infile.nextInt();
 int num4 = infile.nextInt();
 String name = infile.nextLine().trim();
 this.caves.set(num1, new Cave(name, num1, num2, num3, num4));
 }

 this.currentCave = this.caves.get(0);
 this.currentCave.markAsVisited();
 }
 . . .

CaveMaze (cont.)
currently,
§  can move

between caves
§  only see the

names of caves
you have already
visited

§  you must add the
full functionality
of the game (incl.
adding & reacting
to dangers,
winning/losing)

6

 . . .

 public String move(int tunnel) {
 this.currentCave =
 this.caves.get(this.currentCave.getAdjNumber(tunnel));
 this.currentCave.markAsVisited();

 return "OK";
 }

 public String showLocation() {
 String message = "You are currently in " +
 this.currentCave.getCaveName();
 for (int i = 1; i <= 3; i++) {
 Cave adjCave = this.caves.get(this.currentCave.getAdjNumber(i));
 if (adjCave.hasBeenVisited()) {
 message += "\n (" + i + ") " + adjCave.getCaveName();
 }
 else {
 message += "\n (" + i + ") unknown";
 }
 }
 return message;
 }

 . . .
}

Interfaces & polymorphism
recall that interfaces

§  define a set of methods that a class must implement in order to be "certified"
§  any class that implements those methods and declares itself is "certified"

public class myList<E> implements List<E> {
 . . .
}

§  can use the interface name in place of a class name when declaring variables or
passing values to methods

List<String> words = new MyList<String>();

public int sum(List<Integer> data) {
 int sum = 0;
 for (int i = 0; i < data.size(); i++) {
 sum += data.get(i);
 }
 return sum;
}

§  polymorphism refers to the fact that the same method call (e.g., size or get) can
refer to different pieces of code when called on different objects

§  enables the creation of generic libraries (e.g., Collections)
7

8

Inheritance
a closely related mechanism for polymorphic behavior is inheritance

§  one of the most powerful techniques of object-oriented programming
§  allows for large-scale code reuse

with inheritance, you can derive a new class from an existing one
§  automatically inherit all of the fields and methods of the existing class
§  only need to add fields and/or methods for new functionality

example:
•  savings account is a bank account

with interest

•  checking account is a bank account
with transaction fees

9

BankAccount class

here is an implementation of a
basic BankAccount class

§  stores account number and
current balance

§  uses static field to assign each
account a unique number

§  accessor methods provide access
to account number and balance

§  deposit and withdraw methods
allow user to update the balance

public class BankAccount {
 private double balance;
 private int accountNumber;
 private static int nextNumber = 1;

 public BankAccount() {
 this.balance = 0;
 this.accountNumber =
 BankAccount.nextNumber;
 BankAccount.nextNumber++;
 }

 public int getAccountNumber() {
 return this.accountNumber;
 }

 public double getBalance() {
 return this.balance;
 }

 public void deposit(double amount) {
 this.balance += amount;
 }

 public void withdraw(double amount) {
 if (amount >= this.balance) {
 this.balance -= amount;
 }
 }
}

10

Specialty bank accounts
now we want to implement SavingsAccount and CheckingAccount

§  a savings account is a bank account with an associated interest rate, interest is
calculated and added to the balance periodically

§  could copy-and-paste the code for BankAccount, then add a field for interest rate
and a method for adding interest

§  a checking account is a bank account with some number of free transactions, with a
fee charged for subsequent transactions

§  could copy-and-paste the code for BankAccount, then add a field to keep track of
the number of transactions and a method for deducting fees

disadvantages of the copy-and-paste approach
§  tedious work
§  lots of duplicate code – code drift is a distinct possibility

if you change the code in one place, you have to change it everywhere or else
lose consistency (e.g., add customer name to the bank account info)

§  limits polymorphism (will explain later)

11

SavingsAccount class
inheritance provides a better solution
§  can define a SavingsAccount to be a special kind of BankAccount

automatically inherit common features (balance, account #, deposit, withdraw)
§  simply add the new features specific to a savings account

need to store interest rate, provide method for adding interest to the balance

§  general form for inheritance:
public class DERIVED_CLASS extends EXISTING_CLASS {
 ADDITIONAL_FIELDS

 ADDITIONAL_METHODS
}

public class SavingsAccount extends BankAccount {
 private double interestRate;

 public SavingsAccount(double rate) {
 this.interestRate = rate;
 }

 public void addInterest() {
 double interest =
 this.getBalance()*this.interestRate/100;
 this.deposit(interest);
 }
}

note: the derived class
does not explicitly list
fields/methods from the
existing class (a.k.a. parent
class) – they are inherited
and automatically
accessible

12

Using inheritance

BankAccount generic = new BankAccount(); // creates bank account with 0.0 balance
...
generic.deposit(120.0); // adds 120.0 to balance

...
generic.withdraw(20.0); // deducts 20.0 from balance
...

System.out.println(generic.getBalance()); // displays current balance: 100.0

SavingsAccount passbook = new SavingsAccount(3.5);// creates savings account, 3.5% interest
...
passbook.deposit(120.0); // calls inherited deposit method

...
passbook.withdraw(20.0); // calls inherited withdraw method
...

System.out.println(passbook.getBalance()); // calls inherited getBalance method
...
passbook.addInterest(); // calls new addInterest method
...

System.out.println(passbook.getBalance()); // displays 103.5

13

CheckingAccount class
can also define a class that
models a checking account
§  again, inherits basic

features of a bank account
§  assume some number of

free transactions
§  after that, each transaction

entails a fee

§  must override the deposit
and withdraw methods to
also keep track of
transactions

§  can call the versions from
the parent class using
super

super.PARENT_METHOD();

public class CheckingAccount extends BankAccount {
 private int transactionCount;
 private static final int NUM_FREE = 3;
 private static final double TRANS_FEE = 2.0;

 public CheckingAccount() {
 this.transactionCount = 0;
 }

 public void deposit(double amount) {
 super.deposit(amount);
 this.transactionCount++;
 }

 public void withdraw(double amount) {
 super.withdraw(amount);
 this.transactionCount++;
 }

 public void deductFees() {
 if (this.transactionCount > CheckingAccount.NUM_FREE) {
 double fees =
 CheckingAccount.TRANS_FEE *
 (this.transactionCount–CheckingAccount.NUM_FREE);
 super.withdraw(fees);
 }
 this.transactionCount = 0;
 }
}

14

Interfaces & inheritance
recall that with interfaces

§  can have multiple classes that implement the same interface
§  can use a variable of the interface type to refer to any object that implements it

List<String> words1 = new ArrayList<String>();
List<String> words2 = new LinkedList<String>();

§  can use the interface type for a parameter, pass any object that implements it

public void DoSomething(List<String> words) {
 . . .
}

DoSomething(words1);

DoSomething(words2);

the same capability holds with inheritance
§  could assign a SavingsAccount object to a variable of type BankAccount
§  could pass a CheckingAccount object to a method with a BankAccount parameter

15

IS-A relationship
the IS-A relationship holds when inheriting

§  an object of the derived class is still an object of the parent class
§  anywhere an object of the parent class is expected, can provide a derived

object

§  consider a real-world example of inheritance: animal classification

ANIMAL

FISH MAMMAL BIRD

CARP DOG CAT DUCK BLUEJAY GOLDFISH HUMAN

16

Polymorphism
in our example

§  a SavingsAccount is-a BankAccount (with some extra functionality)
§  a CheckingAccount is-a BankAccount (with some extra functionality)

§  whatever you can do to a BankAccount (e.g., deposit, withdraw), you can do with
a SavingsAccount or Checking account

•  derived classes can certainly do more (e.g., addInterest for SavingsAccount)
•  derived classes may do things differently (e.g., deposit for CheckingAccount)

polymorphism: the same method call can refer to different methods when
called on different objects
§  the compiler is smart enough to call the appropriate method for the object

BankAccount acc1 = new SavingsAccount(4.0);
BankAccount acc2 = new CheckingAccount();

acc1.deposit(100.0); // calls the method defined in BankAccount
acc2.deposit(100.0); // calls the method defined in CheckingAccount

§  allows for general-purpose code that works on a class hierarchy

17

Example use

note: in addToAll, the
appropriate deposit
method is called on
each BankAccount
(depending on
whether it is really a
SavingsAccount or
CheckingAccount)

import java.util.ArrayList;

public class AccountAdd {
 public static void main(String[] args) {
 SavingsAccount xmasFund = new SavingsAccount(2.67);
 xmasFund.deposit(250.0);

 SavingsAccount carMoney = new SavingsAccount(1.8);
 carMoney.deposit(100.0);

 CheckingAccount living = new CheckingAccount();
 living.deposit(400.0);
 living.withdraw(49.99);

 ArrayList<BankAccount> finances = new ArrayList<BankAccount>();
 finances.add(xmasFund);
 finances.add(carMoney);
 finances.add(living);

 addToAll(finances, 5.0);
 showAll(finances);
 }

 private static void addToAll(ArrayList<BankAccount> accounts, double amount) {
 for (int i = 0; i < accounts.size(); i++) {
 accounts.get(i).deposit(amount);
 }
 }

 private static void showAll(ArrayList<BankAccount> accounts) {
 for (int i = 0; i < accounts.size(); i++) {
 System.out.println(accounts.get(i).getAccountNumber() + ": $" +
 accounts.get(i).getBalance());
 }
 }
}

18

In-class exercise

define the BankAccount, SavingsAccount, and CheckingAccount classes

create objects of each class and verify their behaviors

are account numbers consecutive regardless of account type?

§  should they be?

what happens if you attempt to withdraw more than the account holds?
§  is it ever possible to have a negative balance?

19

Another example: colored dice

we already have a class that models
a simple (non-colored) die
§  can extend that class by adding a color

field and an accessor method
§  need to call the constructor for the Die

class to initialize the numSides and
numRolls fields

super(ARGS);

public class Die {
 private int numSides;
 private int numRolls;

 public Die(int sides) {
 this.numSides = sides;
 this.numRolls = 0;
 }

 public int roll() {
 this.numRolls++;
 return (int)(Math.random()*this.numSides)+1;
 }

 public int getNumSides() {
 return this.numSides;
 }

 public int getNumRolls() {
 return this.numRolls;
 }
}

public enum DieColor {
 RED, WHITE
}

public class ColoredDie extends Die {
 private DieColor dieColor;

 public ColoredDie(int sides, DieColor c){
 super(sides);
 this.dieColor = c;
 }

 public DieColor getColor() {
 return this.dieColor;
 }
}

20

ColoredDie example

consider a game in which
you roll a collection of dice
and sum their values

§  there is one "bonus" red die

that counts double

import java.util.ArrayList;
import java.util.Collections;

public class RollGame {
 private ArrayList<ColoredDie> dice;
 private static final int NUM_DICE = 5;

 public RollGame() {
 this.dice = new ArrayList<ColoredDie>();

 this.dice.add(new ColoredDie(6, DieColor.RED));
 for (int i = 1; i < RollGame.NUM_DICE; i++) {
 this.dice.add(new ColoredDie(6, DieColor.WHITE));
 }
 Collections.shuffle(dice);
 }

 public int rollPoints() {
 int total = 0;
 for (int i = 0; i < NUM_DICE; i++) {
 int roll = this.dice.get(i).roll();
 if (this.dice.get(i).getColor() == DieColor.RED) {
 total += 2*roll;
 }
 else {
 total += roll;
 }
 }
 return total;
 }
}

instanceof
if you need to determine

the specific type of an
object
§  use the instanceof

operator
§  can then downcast

from the general to the
more specific type

§  note: the roll method is
defined for all Die
types, so can be called
regardless

§  however, before
calling getColor you
must downcast to
ColoredDie

 21

import java.util.ArrayList;
import java.util.Collections;

public class RollGame {
 private ArrayList<Die> dice;
 private static final int NUM_DICE = 5;

 public RollGame() {
 this.dice = new ArrayList<Die>();

 this.dice.add(new ColoredDie(6, DieColor.RED));
 for (int i = 1; i < RollGame.NUM_DICE; i++) {
 this.dice.add(new Die(6));
 }
 Collections.shuffle(dice);
 }

 public int rollPoints() {
 int total = 0;
 for (Die d : this.dice) {
 int roll = this.dice.get(i).roll();
 total += roll;
 if (d instanceof ColoredDie) {
 ColoredDie cd = (ColoredDie)d;
 if (cd.getColor() == DieColor.RED) {
 total += roll;
 }
 }
 }
 return total;
 }
}

OO summary
interfaces & inheritance both provide mechanism for class hierarchies

§  enable the grouping of multiple classes under a single name

§  an interface only specifies the methods that must be provided
each class that implements the interface must provide those methods
a class can implement more than one interface

§  a derived class can inherit fields & methods from its parent
can have additional fields & methods for extended functionality
can even override existing methods if more specific versions are appropriate

the IS-A relationship holds using both interfaces & inheritance
§  if class C implements interface I, an instance of C "is a(n)" instance of I
§  if class C extends parent class P, an instance of C "is a(n)" instance of P

§  polymorphism: obj.method() can refer to different methods when called on
different objects in the hierarchy
 e.g., savAcct.withdraw(20); chkAcct.withdraw(20);

22

