CSC 222: Object-Oriented Programming
Fall 2015

Inheritance & polymorphism
= Hunt the Wumpus, enumerated types
= inheritance, derived classes
= inheriting fields & methods, overriding fields and methods
= |S-Arelationship, polymorphism
= super methods, super constructor
= instanceof, downcasting

Hunt the Wumpus

HUNT THE WUMPUS: Your mission is to explore the maze of caves

To move to an adjacent cave, enter 'M' and the tunnel number.

You are currently in The Fountainhead
(1) unknown
(2) unknown
(3) unknown

What do you want to do? m 2
OK

You are currently in The Silver Mirror
(1) The Fountainhead
(2) unknown
(3) unknown

What do you want to do? m 3
OK

You are currently in Shelob's Lair
(1) The Silver Mirror
(2) unknown
(3) unknown
You smell an awful stench coming from somewhere nearby.

What do you want to do? t 2
Missed, dagnabit!
A startled wumpus charges into your cave... CHOMP CHOMP CHOMP

GAME OVER

and destroy all of the wumpi (without getting yourself killed).

To toss a grenade into a cave, enter 'T' and the tunnel number.

for HW6, you will implement a
text-based adventure game
from the 1970's

= you will wander through a series
of caves, with each cave
connected to 3 others via tunnels

= there are dangers in the caves
* you can be eaten by a Wumpus
« you can fall into a bottomless pit

. gou can be picked up and moved
y bats
= you can sense dangers in
adjacent caves

= you have a limited number of
grenades you can throw when
you smell a Wumpus

Cave class

you must implement a class that models a single cave
= each cave has a name & number, and is connected to three other caves via tunnels
= Dby default, caves are empty & unvisited (although these can be updated)

how do we represent the cave contents?
= we could store the contents as a string: "EMPTY", "WUMPUS", "BATS", "PIT"

Cave ¢ = new Cave("Cavern of Doom", 0, 1, 2, 3):;
c.setContents ("WUMPUS") ;

= potential problems?

there are only 4 possible values for cave contents
= the trouble with using a String to represent these is the lack of error checking

c.setContents ("WUMPAS") ; // perfectly legal, but ?2?2°?

Enumerated types

there is a better alternative for when there is a small, fixed number of values
= an enumerated type is a new type (class) whose value are explicitly enumerated

public enum CaveContents {
EMPTY, WUMPUS, PIT, BATS

}

= note that these values are NOT Strings — they do not have quotes

= you specify a enumerated type value by ENUMTYPE.VALUE

c.setContents (CaveContents.WUMPUS) ;

since an enumerated type has a fixed number of values, any invalid input
would be caught by the compiler

CaveMaze

the CaveMaze
class reads in &
stores a maze of
caves

= provided version
uses an ArrayList
(but could have
used an array)

= currently, only
allows for moving
between caves

= you must add
functionality

20
@ 1 4 9 The
1 0 2 5 The
2 13

3 2 4 7 The
4 0 314 The
5 1 911 The
6 2 712 The
7 3 6 8 The
8 7 313 The
9 0 510 The
10 9 11 14 Ess
11 5 10 12 The
12 6 11 13 The

13 8

14 4
public class CaveMaze { 1212§1§1$
. s e
private ArrayList<Cave> caves; 17 16 17 18 The
private Cave currentCave; 18 13 17 19 The
19 15 16 17 The

Fountainhead
Rumpus Room

6 Buford's Folly

Hall of Kings
Silver Mirror
Gallimaufry
Den of Iniqui
Findledelve
Page of the D
Final Tally
four

Trillion
Scrofula

12 18 Ephemeron
10 15 Shelob's Lair

Lost Caverns
Lost Caverns
Lost Caverns
Lost Caverns
Lost Caverns

ty

eniers

of the Wyrm
of the Wyrm
of the Wyrm
of the Wyrm
of the Wyrm

public CaveMaze (String filename) throws java.io.FileNotFoundException {

Scanner infile = new Scanner (new File(filename)) ;
int numCaves = infile.nextInt();

this.caves = new ArrayList<Cave>();

for (int i = 0; i < numCaves; 1i++) {

this.caves.add (null);

for (int i1 = 0; i < numCaves; 1i++) {
int numl = infile.nextInt();
int num2 = infile.nextInt ()
int num3 = infile.nextInt ();
int num4 = infile.nextInt();
String name = infile.nextLine().trim();

this.caves.set (numl, new Cave (name, numl, numZ2,

this.currentCave = this.caves.get (0);
this.currentCave.markAsVisited() ;

num3, numé));

CaveMaze (cont.)

currently,

= Ccan move
between caves

= only see the
names of caves
you have already
visited

= you must add the
full functionality
of the game (incl.
adding & reacting
to dangers,
winning/losing)

public String move (int tunnel) {
this.currentCave =
this.caves.get (this.currentCave.getAdjNumber (tunnel)) ;
this.currentCave.markAsVisited() ;

return "OK";

}

public String showLocation () {
String message = "You are currently in " +
this.currentCave.getCaveName () ;
for (int 1 = 1; i <= 3; 1i++) {

Cave adjCave = this.caves.get (this.currentCave.getAdjNumber (i))
if (adjCave.hasBeenVisited()) {
message += "\n (" + 1 + ") " + adjCave.getCaveName () ;
}
else {
message += "\n (" + 1 + ") unknown";

}
}

return message;

}

Interfaces & polymorphism

recall that interfaces
= define a set of methods that a class must implement in order to be "certified"
= any class that implements those methods and declares itself is "certified"

public class myList<E> implements List<E> {

}

= can use the interface name in place of a class name when declaring variables or
passing values to methods

List<String> words = new MyList<String>();

public int sum(List<Integer> data) {
int sum = 0;
for (int 1 = 0; i < data.size(); i++) {
sum += data.get (i)

}

return sum;

}

= polymorphism refers to the fact that the same method call (e.g., size or get) can
refer to different pieces of code when called on different objects

= enables the creation of generic libraries (e.g., Collections)

Inheritance

a closely related mechanism for polymorphic behavior is inheritance
= one of the most powerful techniques of object-oriented programming
= allows for large-scale code reuse

with inheritance, you can derive a new class from an existing one
= automatically inherit all of the fields and methods of the existing class
= only need to add fields and/or methods for new functionality

example: BankAccount

* Ssavings account is a bank account
with interest I

* checking account is a bank account

with transaction fees Savings Checking
Account Account

BankAccount class

here is an implementation of a
basic BankAccount class

= gstores account number and
current balance

= uses static field to assign each
account a unique number

= accessor methods provide access
to account number and balance

= deposit and withdraw methods
allow user to update the balance

public class BankAccount {
private double balance;
private int accountNumber;
private static int nextNumber = 1;

public BankAccount () {
this.balance = 0;
this.accountNumber =
BankAccount.nextNumber;
BankAccount.nextNumber++;

}

public int getAccountNumber () {
return this.accountNumber;

}

public double getBalance () {
return this.balance;

}

public void deposit (double amount)
this.balance += amount;

}

public void withdraw (double amount)
if (amount >= this.balance) {
this.balance -= amount;

}

{

{

Specialty bank accounts

now we want to implement SavingsAccount and CheckingAccount

= asavings account is a bank account with an associated interest rate, interest is
calculated and added to the balance periodically

= could copy-and-paste the code for BankAccount, then add a field for interest rate
and a method for adding interest

= achecking account is a bank account with some number of free transactions, with a
fee charged for subsequent transactions

= could copy-and-paste the code for BankAccount, then add a field to keep track of
the number of transactions and a method for deducting fees

disadvantages of the copy-and-paste approach

= tedious work
= |ots of duplicate code — code drift is a distinct possibility

if you change the code in one place, you have to change it everywhere or else
lose consistency (e.g., add customer name to the bank account info)

= |imits polymorphism (will explain later)

10

SavingsAccount class

inheritance provides a better solution
= can define a SavingsAccount to be a special kind of BankAccount
automatically inherit common features (balance, account #, deposit, withdraw)
= simply add the new features specific to a savings account
need to store interest rate, provide method for adding interest to the balance

= general form for inheritance:

public class DERIVED CLASS extends EXISTING CLASS {

ADDITIONAL FIELDS

ADDITIONAL METHODS
}

public class SavingsAccount extends BankAccount ({

note the del‘lved ClaSS private double interestRate;
does not eXpI[C[t/y I[St public SavingsAccount (double rate) {
this.interestRate = rate;

fields/methods from the }
existing class (a.k.a. parent

public void addInterest () {

class) — they are inherited double interest =
\ this.getBalance () *this.interestRate/100;
and automatically this.deposit (interest);

accessible .

Using inheritance

BankAccount generic = new BankAccount () ;

generic.deposit (120.0);

generic.withdraw (20.0);

System.out.println (generic.getBalance())

//

//

//

//

creates bank account with 0.0 balance

adds 120.0 to balance

deducts 20.0 from balance

displays current balance: 100.0

ééésbook.deposit(lZ0.0);
é;;sbook.withdraw(Z0.0);
System.out.println (passbook.getBalance());
é%;sbook.addInterest();

System.out.println (passbook.getBalance()) ;

SavingsAccount passbook = new SavingsAccount (3.5);//

//

//

//

//

//

creates savings account, 3.5% interest

calls

calls

calls

calls

inherited deposit method

inherited withdraw method

inherited getBalance method

new addInterest method

displays 103.5

12

CheckingAccount class

can also define a class that

models a checking account
= again, inherits basic
features of a bank account

= assume some number of
free transactions

= after that, each transaction
entails a fee

= must override the deposit
and withdraw methods to
also keep track of
transactions

= can call the versions from
the parent class using
super

super .PARENT METHOD () ; }

public class CheckingAccount extends BankAccount {

private int transactionCount;
private static final int NUM FREE = 3;
private static final double TRANS FEE = 2.0;

public CheckingAccount () {
this.transactionCount = 0;

}

public void deposit (double amount) {
super.deposit (amount) ;
this.transactionCount++;

}

public void withdraw (double amount) ({
super.withdraw (amount) ;
this.transactionCount++;

}

public void deductFees () {

if (this.transactionCount > CheckingAccount.NUM FREE) {

double fees =
CheckingAccount.TRANS FEE *
(this.transactionCount-CheckingAccount.NUM FREE) ;

super.withdraw (fees);

}

this.transactionCount = 0;

}

13

Interfaces & inheritance

recall that with interfaces
= can have multiple classes that implement the same interface
= can use a variable of the interface type to refer to any object that implements it

new ArrayList<String>();
new LinkedList<String>();

List<String> wordsl
List<String> words2

= can use the interface type for a parameter, pass any object that implements it

public void DoSomething (List<String> words) {

DoSomething (wordsl) ;

DoSomething (words?2) ;

the same capability holds with inheritance

= could assign a SavingsAccount object to a variable of type BankAccount
= could pass a CheckingAccount object to a method with a BankAccount parameter

14

1S-A relationship

the IS -A relationship holds when inheriting
an object of the derived class is still an object of the parent class

= anywhere an object of the parent class is expected, can provide a derived
object

= consider a real-world example of inheritance: animal classification

ghatnsh

15

Polymorphism

In our example
= a SavingsAccount is-a BankAccount (with some extra functionality)
= a CheckingAccount is-a BankAccount (with some extra functionality)

= whatever you can do to a BankAccount (e.g., deposit, withdraw), you can do with
a SavingsAccount or Checking account

« derived classes can certainly do more (e.g., addInterest for SavingsAccount)
* derived classes may do things differently (e.g., deposit for CheckingAccount)

polymorphism: the same method call can refer to different methods when
called on different objects
= the compiler is smart enough to call the appropriate method for the object

BankAccount accl = new SavingsAccount (4.0);
BankAccount acc2?2 = new CheckingAccount () ;

accl.deposit (100.0) ; // calls the method defined in BankAccount
acc?2.deposit (100.0) ; // calls the method defined in CheckingAccount

= allows for general-purpose code that works on a class hierarchy

16

import java.util.ArrayList;

public class AccountAdd {
public static void main(String[] args) {
SavingsAccount xmasFund = new SavingsAccount(2.67);
xmasFund.deposit (250.0) ;

SavingsAccount carMoney = new SavingsAccount (1l.8);
carMoney.deposit (100.0);

CheckingAccount living = new CheckingAccount () ;
living.deposit (400.0) ;
living.withdraw(49.99);

ArrayList<BankAccount> finances = new ArrayList<BankAccount>();

finances.add (xmasFund) ;
finances.add (carMoney) ;
finances.add(living) ;

addToAll (finances, 5.0);
showAll (finances) ;

}

private static void addToAll (ArrayList<BankAccount> accounts,
for (int 1 = 0; 1 < accounts.size(); i++) {
accounts.get (i) .deposit (amount) ;
}
}

private static void showAll (ArrayList<BankAccount> accounts)

{

for (int i = 0; 1 < accounts.size(); i++) {
System.out.println (accounts.get (i) .getAccountNumber () + ":
accounts.get (i) .getBalance()) ;

Example use

note: in addToAll, the
appropriate deposit
method is called on
each BankAccount
(depending on
whether itis really a
SavingsAccount or
CheckingAccount)

double amount) {

$H +

17

In-class exercise

define the BankAccount, SavingsAccount, and CheckingAccount classes
create objects of each class and verify their behaviors

are account numbers consecutive regardless of account type?
= should they be?

what happens if you attempt to withdraw more than the account holds?
= s it ever possible to have a negative balance?

18

Another example

- colored dice

public class Die {
private int numSides;
private int numRolls;

public Die(int sides) {
this.numSides = sides;
this.numRolls 0;

}

public int roll () {
this.numRolls++;

return (int) (Math.random() *this.numSides) +1;

}

public int getNumSides ()
return this.numSides;

}

public int getNumRolls ()
return this.numRolls;
}
}

{

{

we already have a class that models
a simple (non-colored) die

= can extend that class by adding a color
field and an accessor method

= need to call the constructor for the Die
class to initialize the numSides and
numRolls fields

super (ARGS) ;

public enum DieColor {
RED, WHITE
}

public class ColoredDie extends Die {
private DieColor dieColor;

public ColoredDie (int sides, DieColor c) {
super (sides) ;
this.dieColor = c;

}

public DieColor getColor () {
return this.dieColor;
}
} 19

ColoredDie example

consider a game in which
you roll a collection of dice
and sum their values

= there is one "bonus" red die
that counts double

import java.util.ArrayList;
import java.util.Collections;

public class RollGame {
private ArrayList<ColoredDie> dice;
private static final int NUM DICE = 5;

public RollGame () {
this.dice = new ArrayList<ColoredDie> () ;

this.dice.add (new ColoredDie (6, DieColor.RED));
for (int 1 = 1; 1 < RollGame.NUM DICE; i++) {
this.dice.add (new ColoredDie (6, DieColor.WHITE)) ;
}
Collections.shuffle (dice);
}

public int rollPoints () {
int total = 0;
for (int 1 = 0; 1 < NUM DICE; i++) {
int roll = this.dice.get (i) .roll();
if (this.dice.get (i) .getColor () ==
total += 2*roll;
}
else {
total += roll;
}
}

return total;

DieColor.RED)

}

{

20

instanceof

if you need to determine
the specific type of an

object
= yse the instanceof
operator

= can then downcast
from the general to the
more specific type

= note: the roll method is
defined for all Die
types, so can be called
regardless

= however, before
calling getColor you
must downcast to
ColoredDie

import java.util.ArrayList;
import java.util.Collections;

public class RollGame
private ArraylList<Die> dice;
private static final int NUM DICE = 5;

public RollGame () {
this.dice = new ArrayList<Die>();

this.dice.add (new ColoredDie (6, DieColor.RED));
1 < RollGame.NUM_DICE; i++) |

for (int 1 = 1;
this.dice.add (new Die (6));

}

Collections.shuffle (dice);

}

public int rollPoints () {
int total = 0;
for (Die d : this.dice) {
int roll = this.dice.get (i) .roll();
total += roll;
if (d instanceof ColoredDie) {
ColoredDie cd = (ColoredDie)d;
if (cd.getColor() == DieColor.RED)
total += roll;
}
}
}
return total;

}

{

21

OO0 summary

interfaces & inheritance both provide mechanism for class hierarchies
= enable the grouping of multiple classes under a single name

= an interface only specifies the methods that must be provided
each class that implements the interface must provide those methods
a class can implement more than one interface

= aderived class can inherit fields & methods from its parent
can have additional fields & methods for extended functionality
can even override existing methods if more specific versions are appropriate

the IS-A relationship holds using both interfaces & inheritance

= f class C implements interface |, an instance of C "is a(n)" instance of |
= f class C extends parent class P, an instance of C "is a(n)" instance of P

= polymorphism: obj .method () can refer to different methods when called on
different objects in the hierarchy

€.J., savAcct.withdraw (20); chkAcct.withdraw (20) ;

22

