
1

1

CSC 222: Computer Programming II

Spring 2004

Pointers and dynamic memory
pointer type
dereference operator (*), address-of operator (&)
sorting lists of pointers
dynamic memory allocation, new operator
dynamic arrays and vectors
destructors, copy constructors, assignment operators

2

Sorting revisited…
recall from lectures & hw4

sorting involves some # of inspection and some # of swaps
the amount of time required for a swap is dependent on the size of the values

vector<int> nums(10000); SelectSort(nums);

vector<string> names(10000); SelectSort(names);

vector<IRSTaxRecord> audits(10000); SelectSort(audits);

to selection sort a list of 10,000 items:
must perform 9,999 swaps (= 29,997 assignments)
if the items being sorted are large, then swap time can add up!

POSSIBLE WORKAROUNDS?

2

3

Lists of pointers
idea: instead of storing the (potentially large) items in the vector, store them

elsewhere and keep pointers (addresses)

"foo" "bar" "biz" "baz" "boo" "zoo"

. . .

can sort as before
when comparing values, have to follow the pointers to the actual data
when swapping, copy the pointers, not the data values

pointers are addresses (integers), so copying is fast

note: since all pointers are same size, swap time is independent of data size

4

a pointer is nothing more than an address (i.e., an integer)
can declare a pointer to a particular type of value using *

int * p;

string * q;

TYPE * PTR;

Pointers

???p

???q

???PTR

operations on pointers:
dereference operator: given a pointer to some memory location, can access the
value stored there using *

address-of operator: given a memory cell, can get its address (i.e., a pointer to it)
using &

4p cout << *p << endl;

x 7 p = &x;

3

5

int * p;

int x = 6;

p = &x;

cout << *p << endl;

x++;

cout << *p << endl;

*p += 3;

cout << x;

Pointer examples

using pointers and operations, can create aliases for memory locations
in the above examples, x and *p refer to the same location

reminiscent of reference parameters?

6

Reference parameters and pointers
reference parameters are implemented using pointers

when you pass an argument by-reference, you are really passing a pointer to it

implicitly,
the address of the argument is obtained and passed in to the parameter
each access of the parameter first dereferences the address

void Foo(int & x)
{

cout << x << endl;
}

int a = 3;
Foo(a);

void Foo(int * x)
{

cout << *x << endl;
}

int a = 3;
Foo(&a);

what you write… what C++ sees…

4

7

Tracing code…
template <class Type> void Swap(Type & x, Type & y)
{

Type temp = x;
x = y;
y = temp;

}

int a = 5, b = 9;
Swap(a, b);
cout << a << " " << b << endl;

int * p1 = &a;
int * p2 = &b;
cout << a << " " << b << endl;

Swap(*p1, *p2);
cout << a << " " << b << endl;
cout << *p1 << " " << *p2 << endl;

Swap(p1, p2);
cout << a << " " << b << endl;
cout << *p1 << " " << *p2 << endl;

8

Reimplementing selection sort

template <class Comparable>
void SelectionSortPtr(vector<Comparable *> & nums, int low, int high)
{

for (int i = low; i <= high-1; i++) {
int indexOfMin = i;
for (int j = i+1; j <= high; j++) {

if (*(nums[j]) < *(nums[indexOfMin])) {
indexOfMin = j;

}
}

Comparable * temp = nums[i];
nums[i] = nums[indexOfMin];
nums[indexOfMin] = temp;

}
}

template <class Comparable> void SelectionSortPtr(vector<Comparable *> &
nums)

{
SelectionSortPtr(nums, 0, nums.size()-1);

}

the vector contains
pointers to comparable
values

when comparing
values, dereference
(note: must parenthesize
since * has higher
precedence than [])

when swapping, swap
pointers, not values

5

9

Reimplementing merge sort
template <class Comparable> void MergePtr(vector<Comparable *> & nums, int low, int high)
{

vector<Comparable *> copy;
int size = high-low+1, middle = 1 + (low+high)/2; // middle rounds up if even
int front1 = low, front2 = middle;
for (int i = 0; i < size; i++) {

if (front2 > high || (front1 < middle && *(nums[front1]) < *(nums[front2]))) {
copy.push_back(nums[front1]);
front1++;

}
else {

copy.push_back(nums[front2]);
front2++;

}
}
for (int k = 0; k < size; k++) {

nums[low+k] = copy[k];
}

}

template <class Comparable> void MergeSortPtr(vector<Comparable *> & nums, int low, int high)
{

if (low < high) {
int middle = (low + high)/2;
MergeSortPtr(nums, low, middle);
MergeSortPtr(nums, middle+1, high);
MergePtr(nums, low, high);

}
}

template <class Comparable> void MergeSortPtr(vector<Comparable *> & nums)
{

MergeSortPtr(nums, 0, nums.size()-1);
}

again, vector stores pointers

dereference before comparing

swap pointers, not values

10

Dynamic memory
so far, we have only considered pointers to existing (static) memory

when you declare a variable, the compiler automatically allocates memory for it and
reclaims that memory location when the lifetime ends

we can also use pointers to access dynamically-allocated memory
i.e., memory locations that are explicitly created/destroyed on user demand

the new operator returns a pointer to a new, dynamically-allocated memory location

int * iptr = new int;
*iptr = 4;
cout << *iptr << endl;

string * sptr = new string;
*sptr = "foo";
cout << *p << endl;

6

11

Testing the sorts
#include <iostream>
#include <vector>
#include <string>
#include "Sorts.h"
using namespace std;

int main()
{

vector<string *> words1, words2;
string str;
while (cin >> str) {

string * sptr = new string;
*sptr = str;

words1.push_back(sptr);
words2.push_back(sptr);

}

MergeSortPtr(words1);
for (int i = 0; i < words1.size(); i++) {

cout << *(words1[i]) << endl;
}

SelectionSortPtr(words2);
for (int i = 0; i < words2.size(); i++) {

cout << *(words2[i]) << endl;
}

return 0;
}

here, the test program:
• creates two vectors of string pointers

• reads and stores words in the vectors

note: only creates one copy of the
word, has two different pointers to it

• sorts the vectors and displays the
contents

note: new requires a class constructor

here, the default constructor for string (with
no arguments is used)

could have used 1-argument constructor
string * sptr = new string(str);

12

Vector class implementation
recall: vector is not a built-in type in C++

it is a class, defined in the <vector> library

C++ has a built-in array type, which is the underlying data structure for vector
like vector, an array is a contiguous sequence of items, accessible via indexing

int nums[100];

for (int i = 0; i < 100; i++) {
nums[i] = 0;

}

unlike vectors, arrays:
do not have size info associated with them (you must keep track yourself)
the size of the array must be known at compile time (& stays fixed)
no bounds-checking is done for arrays
when you pass an array by-value, the array elements can still be changed!

WHY?

7

13

Arrays as pointers
inutitively, we think of an array as a contiguous sequence of locations

…

int nums[100];

nums

0 1 2 3 4 5 99

technically, a C++ array is implemented as a pointer to the sequence

…nums

0 1 2 3 4 5 99

to access nums[i]:
• follow the nums pointer to nums[0], then
• move ahead i locations in memory

14

Arrays as parameters
recall how a value parameter works:

a copy of the argument is stored in the parameter
changes to the parameter only affect the copy

but what if the parameter is a pointer (e.g., an array)?

void Init(int nums[], int size)
{

for (int i = 0; i < size; i++) {
nums[i] = 0;

}
}

int grades[20];
Init(grades, 20);

…
grades

0 1 2 3 4 5 19

since an array is really a pointer, passing an array by-value still allows for
access to the original array elements

note: this is equivalent to:
void Init(int * nums, int size)

8

15

Dynamic arrays
the pointer nature of arrays gives us a way around the compile-time size

restriction

ordinary declaration: int nums[20];

creates the nums pointer , allocates space for 20 ints, and makes nums point to it

can separate the pointer declaration and memory allocation steps
int * nums; creates the nums pointer (to an int)
nums = new int[20]; allocates space for 20 ints and points nums to it

the new operator "dynamically" allocates storage, size can be determined
during execution

cout << "How many numbers? ";
cin >> size;

int * nums;
nums = new int[size];

16

Vectors and dynamic arrays
the underlying data structure of a vector is a dynamically-allocated array

template <class Type>
class vector
{
public:

vector(int size = 0)
{

vecLength = size;
vecList = new Type[size];

}

int size()
{

return vecLength;
}

Type & operator[](int index)
{

return vecList[index];
}

// OTHER MEMBER FUNCTIONS

private:
Type * vecList;
int vecLength;

};

MEMBER
FUNCTIONS

0 1 2 3 4

5

vector object

9

17

Resizing a vector
you can't resize an array, but you can create a new (bigger) array and copy

void resize(int newSize)
{

Type * newList = new Type[newSize]; // ALLOCATE A NEW ARRAY OF DESIRED SIZE

int numToCopy = min(newSize, vecLength); // DETERMINE HOW MANY ITEMS TO COPY
for (int i = 0; i < numToCopy; i++) { // AND COPY FROM vecLIST TO THE newList

newList[i] = vecList[i];
}

delete[] vecList; // DEALLOCATE THE MEMORY IN vecList

vecList = newList; // RESET vecList TO POINT TO THE NEW ARRAY
vecLength = newSize; // AND RESET vecLength

}

note that dynamically-allocated memory is only accessible through a pointer
if you lose the pointer, then the memory is lost (will NOT be automatically reclaimed)

MEMORY LEAKAGE can eventually use up all free memory

any memory the programmer explicitly allocates using new must be explicitly
deallocated using delete (or delete[] for an array)

18

List & SortedList revisited
recall the List and SortedList classes

List : stores a vector of items
Add operation inserts item in order
IsStored operation uses binary search to see if item is in the vector

SortedList : stores a vector of items
Add operation inserts item in order
AddFast operation adds at end
IsStored checks to see if currently sorted

if sorted, then perform binary search
if not sorted, then merge sort the vector before binary search

we could improve the performance of the List and SortedList classes by
storing pointers in the vector

note: member functions are unchanged, so change is transparent to client
underlying data structure changes, and member functions that access it

10

19

ListPtr.htemplate <class ItemType>
class List
{
public:

List<ItemType>() { /* does nothing */ }

virtual void Add(const ItemType & item)
{
ItemType * newPtr = new ItemType(item);
items.push_back(newPtr);

}

virtual bool IsStored(const ItemType & item)
{

for (int i = 0; i < items.size(); i++) {
if (item == *(items[i])) {

return true;
}

}
return false;

}

int NumItems() const
{

return items.size();
}

void DisplayAll() const
{

for (int i = 0; i < items.size(); i++) {
cout << *(items[i]) << endl;

}
}

protected:
vector<ItemType *> items; // storage for strings

};

Add needs to allocate space for a copy,
then add a pointer to that copy to the
vector

IsStored needs to dereference the
pointers when comparing

DisplayAll needs to dereference the
pointers when displaying

items stores pointers

20

SortedListPtr.htemplate <class ItemType>
class SortedList : public List<ItemType>
{
public:

SortedList<ItemType>()
{

isSorted = true;
}

void Add(const ItemType & item)
{
ItemType * newPtr = new ItemType(item);
items.push_back(newPtr);

int i;
for (i = items.size()-1;

i > 0 && *(items[i-1]) > item;
i--) {

items[i] = items[i-1];
}
items[i] = newPtr;

}

void AddFast(const ItemType & item)
{
ItemType * newPtr = new ItemType(item);
items.push_back(newPtr);
isSorted = false;

}

bool IsStored(const ItemType & item)
{

if (!isSorted) {
MergeSortPtr(items);
isSorted = true;

}

int left = 0, right = items.size()-1;
while (left <= right) {

int mid = (left+right)/2;
if (item == *(items[mid])) {

return true;
}
else if (item < *(items[mid])) {

right = mid-1;
}
else {

left = mid + 1;
}

}
return false;

}

private:
bool isSorted;

};

11

21

Timing the new SortedList

. . .

SortedList<string> slist1, slist2;

start = clock();
for (int i = 0; i < listSize; i++) {

slist1.Add(randomData[i]);
}
found = slist1.IsStored("aaa");
stop = clock();

cout << "Simple sort/search required " << stop-start
<< " milliseconds" << endl;

start = clock();
for (int i = 0; i < listSize; i++) {

slist2.AddFast(randomData[i]);
}
found = slist2.IsStored("aaa");
stop = clock();

cout << "Modified sort/search required " << stop-start
<< " milliseconds" << endl;

. . .

using random 20-letter words:

List size: 1000
Simple w/ words: 1623
Modified w/ words: 390
Simple w/ pointers: 1132
Modified w/ pointers: 100

List size: 2000
Simple w/ words: 6650
Modified w/ words: 841
Simple w/ pointers: 4556
Modified w/ pointers: 231

22

With great power…
when you dynamically allocate memory using new, you are circumventing

the standard memory management of C++
you must explicitly delete any memory you new

e.g., if we added a Remove method to List & SortedList, must delete space

void Foo()
{

int * ptr = new int;
*ptr = 876;

...

delete ptr;
}

pointers are statically allocated
values – when lifetime ends,
memory for pointer is reclaimed

delete reclaims the dynamic
memory, not the pointer

void Foo()
{

SortedList words;
words.Add("foo");
words.Add("bar");
words.Add("biz");

...
}

if a class object contains
dynamically allocated memory,
how/when does it get reclaimed?

12

23

Destructor
classes with dynamic memory require an additional member function called

a destructor (the antithesis of a constructor)
a destructor has the same name as the class, only preceded with ~
it is automatically called when the lifetime of a class object ends
should contain code for reclaiming dynamically allocated memory to avoid leakage

~List<ItemType>()
// destructor: deletes any remaining items
// (automatically called when the lifetime
// of the List item ends)
{

for (int i = 0; i < items.size(); i++) {
delete items[i];

}
items.clear(); //not nec., but OK

}

with a derived class, the destructor for
that class (if any) is called first, then
the destructor for the parent class (if
any)

SortedList doesn't need a
destructor since the List destructor
does it all!

24

But wait, there's more…
there are times when you want to make a copy of an object

value parameters
assignments

by default, an object is copied bit-by-bit

int x = 5;

int copy;
copy = x;

SortedList words;

SortedList copy;
copy = words;

5x

5copy

"foo"

"bar"

"biz"

"baz"

"boo"

"zoo"

what happens? problems?

isSorted = true

13

25

Copy constructor
by default, if you copy a "dynamic" object, you only copy the pointers

both structures point to the same memory
if one alters the contents, it affects the other!
if one reaches end of lifetime, its destructor will destroy the other one's data!

a copy constructor is a constructor that takes another object of the same
type as argument, and creates a new copy

List<ItemType>(const List<ItemType> & other)
// copy constructor, creates a copy of other
{
items.clear();
for (int i = 0; i < other.items.size(); i++) {

Add(*(other.items[i]));
}

}

SortedList<ItemType>(const SortedList<ItemType> & other) : List<ItemType>(other)
{

isSorted = other.isSorted;
}

note: SortedList copy
constructor first calls List
copy constructor, then copies
isSorted value

26

Assignment operator
copy constructor works for copies related to value parameters, construction
to handle assignments, must overload the = operator to work for Lists

similar to copy constructor, but must return reference to new value

List<ItemType> & operator=(const List<ItemType> & other)
// assignment constructor, creates a copy of other
{
if (this != &other) {

items.clear();
for (int i = 0; i < other.items.size(); i++) {

Add(*(other.items[i]));
}

}
return *this;

}

SortedList<ItemType> & operator=(const SortedList<ItemType> & other)
{
if (this != &other) {

List<ItemType>::operator=(other);
isSorted = other.isSorted;

}
return *this;

}

also, must be careful in
the case where x = x;

14

27

Dynamic memory summary
dynamic memory adds great flexibility to code

can allocate new memory on demand, resize vectors, avoid swapping data, …

when you utilize dynamic memory, you are responsible for its deallocation
and making sure copies/assignments are handled correctly

when implementing a class that utilizes dynamic memory, generally need:
destructor: to automatically reclaim dynamic memory when the object's

lifetime ends

copy constructor: to construct copies (e.g., for value parameters)

assignment operator: to handle assignments correctly

