
1

1

CSC 321: Data Structures

Fall 2016

Trees & recursion

§  trees, tree recursion
§  BinaryTree class
§  BST property
§  BinarySearchTree class: override add, contains
§  search efficiency

2

Trees
a tree is a nonlinear data structure consisting of nodes (structures
containing data) and edges (connections between nodes), such that:

A

B C D

E F G

§  one node, the root, has no parent (node connected from above)

§  every other node has exactly one parent node

§  there is a unique path from the root to each node (i.e., the tree is connected and
there are no cycles)

nodes that have no children
(nodes connected below
them) are known as leaves

2

3

Recursive definition of a tree
trees are naturally recursive data structures:

§  the empty tree (with no nodes) is a tree
§  a node with subtrees connected below is a tree

A

B C D

E F G

tree with 7 nodes

a tree where each node has at most 2 subtrees (children) is a binary tree

empty tree

A

tree with 1 node
(empty subtrees)

4

Trees in CS
trees are fundamental data structures in computer science

example: file structure
§  an OS will maintain a directory/file hierarchy as a tree structure
§  files are stored as leaves; directories are stored as internal (non-leaf) nodes

descending down the hierarchy to a subdirectory
 ô

traversing an edge down to a child node

DISCLAIMER: directories contain links back to
their parent directories, so not strictly a tree

~davereed

public_html mail

Imagesindex.html

reed.jpg logo.gif

dead.letter

3

5

Recursively listing files
to traverse an arbitrary directory structure, need recursion

to list a file system object (either a directory or file):

1.  print the name of the current object
2.  if the object is a directory, then

recursively list each file system object in the directory

in pseudocode:

public static void ListAll(FileSystemObject current) {

 System.out.println(current.getName());
 if (current.isDirectory()) {
 for (FileSystemObject obj : current.getContents()) {
 ListAll(obj);

 }
 }

}

6

Recursively listing files
public static void ListAll(FileSystemObject current) {
 System.out.println(current.getName());
 if (current.isDirectory()) {
 for (FileSystemObject obj : current.getContents()) {

 ListAll(obj);
 }
 }

}

~davereed

public_html mail

Imagesindex.html

reed.jpg logo.gif

dead.letter

this method performs a pre-order
traversal: prints the root first, then
the subtrees

4

7

UNIX du command
in UNIX, the du command lists the size of all files and directories

~davereed

public_html mail

Imagesindex.html

reed.jpg logo.gif

dead.letter

2 blocks

3 blocks 3 blocks

1 block

from the ~davereed directory:

unix> du –a

2 ./public_html/index.html
3 ./public_html/Images/reed.jpg
3 ./public_html/Images/logo.gif

7 ./public_html/Images
10 ./public_html
1 ./mail/dead.letter
2 ./mail

13 .

public static int du(FileSystemObject current) {
 int size = current.blockSize();
 if (current.isDirectory()) {
 for (FileSystemObject obj : current.getContents()) {
 size += du(obj);
 }
 }
 System.out.println(size + " " + current.getName());
 return size;

}

this method performs a
post-order traversal: prints
the subtrees first, then the
root

8

How deep is a balanced tree?

Proof (by induction):
BASE CASES: when H = 0, 20 - 1 = 0 nodes ü

 when H = 1, 21 - 1 = 1 node ü

HYPOTHESIS: Assume for all h < H, e.g., a tree with height H-1 can store up to 2H-1 -1

nodes.

INDUCTIVE STEP: A tree with height H has a root and subtrees with height up to H-1.

 By our hypothesis, T1 and T2 can each store
 2H-1 -1 nodes, so tree with height H can store up to

 1 + (2H-1 -1) + (2H-1 -1) =
 2H-1 + 2H-1 -1 =
 2H -1 nodes ü

equivalently: N nodes can be stored in a binary tree of height ⎡log2(N+1)⎤

T1 T2

height
H-1

CLAIM: A binary tree with height H can store up to 2H-1 nodes.

5

9

Trees & recursion
since trees are recursive structures, most tree traversal and manipulation

operations are also recursive
§  can divide a tree into root + left subtree + right subtree
§  most tree operations handle the root as a special case, then recursively process

the subtrees

§  e.g., to display all the values in a (nonempty) binary tree, divide into
1.  displaying the root
2.  (recursively) displaying all the values in the left subtree
3.  (recursively) displaying all the values in the right subtree

§  e.g., to count number of nodes in a (nonempty) binary tree, divide into
1.  (recursively) counting the nodes in the left subtree
2.  (recursively) counting the nodes in the right subtree
3.  adding the two counts + 1 for the root

BinaryTree class

public class BinaryTree<E> {
 protected class TreeNode<E> {

 …

 }

 protected TreeNode<E> root;

 public BinaryTree() {
 this.root = null;
 }

 public void add(E value) { … }

 public boolean remove(E value) { … }

 public boolean contains(E value) { … }

 public int size() { … }

 public String toString() { … }

}

10

to implement a binary tree,
need to link together tree
nodes
§  the root of the tree is

maintained in a field (initially
null for empty tree)

§  the root field is "protected"
instead of "private" to allow
for inheritance

§  recall: a protected field is
accessible to derived
classes, otherwise private

6

TreeNode class
 protected class TreeNode<E> {
 private E data;
 private TreeNode<E> left;
 private TreeNode<E> right;

 public TreeNode(E d, TreeNode<E> l, TreeNode<E> r) {
 this.data = d;
 this.left = l;
 this.right = r;
 }

 public E getData() { return this.data; }

 public TreeNode<E> getLeft() { return this.left; }

 public TreeNode<E> getRight() { return this.right; }

 public void setData(E newData) { this.data = newData; }

 public void setLeft(TreeNode<E> newLeft) {
 this.left = newLeft;
 }

 public void setRight(TreeNode<E> newRight) {
 this.right = newRight;
 }
 }

11

virtually same as
DNode class

§  change the field
& method names
to reflect the
orientation of
nodes

§  uses left/right
instead of
previous/next

12

size method

 public int size() {
 return this.size(this.root);
 }

 private int size(TreeNode<E> current) {
 if (current == null) {
 return 0;
 }
 else {
 return this.size(current.getLeft()) +
 this.size(current.getRight()) + 1;
 }
 }

recursive approach:
BASE CASE: if the tree is empty, number of nodes is 0

RECURSIVE: otherwise, number of nodes is
(# nodes in left subtree) + (# nodes in right subtree) + 1 for the root

note: a recursive implementation requires passing the root as parameter
§  will have a public "front" method, which calls the recursive "worker" method

7

13

contains method

 public boolean contains(E value) {
 return this.contains(this.root, value);
 }

 private boolean contains(TreeNode<E> current, E value) {
 if (current == null) {
 return false;
 }
 else {
 return value.equals(current.getData()) ||
 this.contains(current.getLeft(), value) ||
 this.contains(current.getRight(), value);
 }
 }

recursive approach:
BASE CASE: if the tree is empty, the item is not found
BASE CASE: otherwise, if the item is at the root, then found

RECURSIVE: otherwise, search the left and then right subtrees

14

toString method

 public String toString() {
 if (this.root == null) {
 return "[]";
 }
 String recStr = this.toString(this.root);
 return "[" + recStr.substring(0,recStr.length()-1) + "]";
 }

 private String toString(TreeNode<E> current) {
 if (current == null) {
 return "";
 }
 return this.toString(current.getLeft()) +
 current.getData().toString() + "," +
 this.toString(current.getRight());
 }

must traverse the entire tree and build a string of the items
§  there are numerous patterns that can be used, e.g., in-order traversal

BASE CASE: if the tree is empty, then nothing to traverse

RECURSIVE: recursively traverse the left subtree, then access the root,
 then recursively traverse the right subtree

8

15

Alternative traversal algorithms

 private String toString(TreeNode<E> current) {
 if (current == null) {
 return "";
 }
 return current.getData().toString() + "," +

 this.toString(current.getLeft()) +
 this.toString(current.getRight());
 }

 private String toString(TreeNode<E> current) {
 if (current == null) {
 return "";
 }
 return this.toString(current.getLeft()) +
 this.toString(current.getRight()) +
 current.getData().toString() + ",";
 }

pre-order traversal:
BASE CASE: if the tree is
empty, then nothing to
traverse

RECURSIVE: access root,
recursively traverse left
subtree, then right subtree

post-order traversal:
BASE CASE: if the tree is
empty, then nothing to
traverse

RECURSIVE: recursively
traverse left subtree, then
right subtree, then root

16

Exercises
/** @return the number of times value occurs in the tree with specified root */
public int numOccur(TreeNode<E> root, E value) {

}

/** @return the sum of all the values stored in the tree with specified root */
public int sum(TreeNode<Integer> root) {

}

/** @return the maximum value in the tree with specified root */
public int max(TreeNode<Integer> root) {

}

9

17

add method

 public void add(E value) {
 this.root = this.add(this.root, value);
 }

 private TreeNode<E> add(TreeNode<E> current, E value) {
 if (current == null) {
 current = new TreeNode<E>(value, null, null);
 }
 else if (this.size(current.getLeft()) <= this.size(current.getRight())) {
 current.setLeft(this.add(current.getLeft(), value));
 }
 else {
 current.setRight(this.add(current.getRight(), value));
 }
 return current;
 }

how do you add to a binary tree?
§  ideally would like to maintain balance, so (recursively) add to smaller subtree
§  big Oh?
§  we will consider more efficient approaches for maintaining balance later

18

remove method

how do you remove from a binary tree?
§  tricky, since removing an internal node

means rerouting pointers
§  must maintain binary tree structure

simpler solution

1.  find node (as in search)
2.  if a leaf, simply remove it
3.  if no left subtree, reroute parent pointer to right subtree
4. otherwise, replace current value with a leaf value from the left subtree

(and remove the leaf node)

 DOES THIS MAINTAIN BALANCE?
 (you can see the implementation in BinaryTree.java)

10

Induction and trees
which of the following are true? prove/disprove

§  in a full binary tree, there are more nodes on the bottom (deepest) level than all
other levels combined

§  in any (non-empty) binary tree, there will always be more leaves than non-leaves

§  in any (non-empty) binary tree, there will always be more empty children (i.e., null
left or right fields within nodes) than children (i.e., non-null fields)

19

20

Searching linked lists
recall: a (linear) linked list only provides sequential access à O(N) searches

it is possible to obtain O(log N) searches using a tree structure

in order to perform binary search efficiently, must be able to

§  access the middle element of the list in O(1)
§  divide the list into halves in O(1) and recurse

HOW CAN WE GET THIS FUNCTIONALITY FROM A TREE?

front back

11

21

Binary search trees
 a binary search tree is a binary tree in which, for every node:

§  the item stored at the node is ≥ all items stored in its left subtree
§  the item stored at the node is < all items stored in its right subtree

in a (balanced) binary search tree:

•  middle element = root

•  1st half of list = left subtree

•  2nd half of list = right subtree

furthermore, these properties hold
for each subtree

BinarySearchTree class

public class BinarySearchTree<E extends Comparable<? super E>>
extends BinaryTree<E> {

 public BinarySearchTree() {

 super();

 }

 public void add(E value) {

 // OVERRIDE TO MAINTAIN BINARY SEARCH TREE PROPERTY

 }

 public void contains(E value) {

 // OVERRIDE TO TAKE ADVANTAGE OF BINARY SEARCH TREE PROPERTY

 }

 public void remove(E value) {

 // DOES THIS NEED TO BE OVERRIDDEN?

 }

}
22

can use inheritance to derive BinarySearchTree from BinaryTree

12

23

Binary search in BSTs

to search a binary search tree:
1.  if the tree is empty, NOT FOUND
2.  if desired item is at root, FOUND
3.  if desired item < item at root, then recursively search the left subtree
4.  if desired item > item at root, then recursively search the right subtree

 public boolean contains(E value) {
 return this.contains(this.root, value);
 }

 private boolean contains(TreeNode<E> current, E value) {
 if (current == null) {
 return false;
 }
 else if (value.equals(current.getData())) {
 return true;
 }
 else if (value.compareTo(current.getData()) < 0) {
 return this.contains(current.getLeft(), value);
 }
 else {
 return this.contains(current.getRight(), value);
 }
 }

24

Search efficiency
how efficient is search on a BST?

§  in the best case?
O(1) if desired item is at the root

§  in the worst case?
O(height of the tree) if item is leaf on the longest path from the root

in order to optimize worst-case behavior, want a (relatively) balanced tree
§  otherwise, don't get binary reduction

§  e.g., consider two trees, each with 7 nodes

13

25

Search efficiency (cont.)
we showed that N nodes can be stored in a binary tree of height ⎡log2(N+1)⎤
so, in a balanced binary search tree, searching is O(log N)

N nodes à height of ⎡log2(N+1)⎤ à in worst case, have to traverse ⎡log2(N+1)⎤ nodes

what about the average-case efficiency of searching a binary search tree?
§  assume that a search for each item in the tree is equally likely
§  take the cost of searching for each item and average those costs

costs of search
1

2 + 2

3 + 3 + 3 + 3

è  17/7 è 2.42

define the weight of a tree to be the sum of all node depths (root = 1, …)

average cost of searching a BST = weight of tree / number of nodes in tree

26

Search efficiency (cont.)

costs of search
1

2 + 2

3 + 3 + 3 + 3

è  17/7 è 2.42

 ~log N

costs of search

1

+ 2
+ 3
+ 4
+ 5
+ 6
+ 7

è  28/7 è 4.00

 ~N/2

14

27

Inserting an item

inserting into a BST
1.  traverse edges as in a search
2. when you reach a leaf, add the

new node below it

 public void add(E value) {
 this.root = this.add(this.root, value);
 }

 private TreeNode<E> add(TreeNode<E> current, E value) {
 if (current == null) {
 return new TreeNode<E>(value, null, null);
 }

 if (value.compareTo(current.getData()) <= 0) {
 current.setLeft(this.add(current.getLeft(), value));
 }
 else {
 current.setRight(this.add(current.getRight(), value));
 }
 return current;
 }

28

Removing an item

recall BinaryTree remove
1.  find node (as in search)
2.  if a leaf, simply remove it
3.  if no left subtree, reroute parent pointer to right subtree
4. otherwise, replace current value with a leaf value from the left subtree (and

remove the leaf node)

CLAIM: as long as you select the rightmost (i.e., maximum) value in
the left subtree, this remove algorithm maintains the BST property

WHY?

so, no need to override remove

15

29

Maintaining balance

PROBLEM: random insertions (and removals) do not guarantee balance
§  e.g., suppose you started with an empty tree & added words in alphabetical order

braves, cubs, giants, phillies, pirates, reds, rockies, …

with repeated insertions/removals, can degenerate so that height is O(N)
§  specialized algorithms exist to maintain balance & ensure O(log N) height
§  or take your chances

braves

cubs

giants

phillies

