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CSC 321: Data Structures 
 

Fall 2016 

 
Trees & recursion 

§  trees, tree recursion 
§  BinaryTree class 
§  BST property 
§  BinarySearchTree class: override add, contains 
§  search efficiency 
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Trees 
a tree is a nonlinear data structure consisting of nodes (structures 
containing data) and edges (connections between nodes), such that: 

A

B C D

E F G

§  one node, the root, has no parent (node connected from above) 

§  every other node has exactly one parent node 

§  there is a unique path from the root to each node (i.e., the tree is connected and 
there are no cycles) 

nodes that have no children 
(nodes connected below 
them) are known as leaves 
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Recursive definition of a tree 
trees are naturally recursive data structures: 

§  the empty tree (with no nodes) is a tree 
§  a node with subtrees connected below is a tree 

A

B C D

E F G

tree with 7 nodes 

a tree where each node has at most 2 subtrees (children) is a binary tree 

empty tree 

A

tree with 1 node 
(empty subtrees) 
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Trees in CS 
trees are fundamental data structures in computer science 
 

example: file structure 
§  an OS will maintain a directory/file hierarchy as a tree structure 
§  files are stored as leaves; directories are stored as internal (non-leaf) nodes 

descending down the hierarchy to a subdirectory  
  ô 

traversing an edge down to a child node 

DISCLAIMER: directories contain links back to 
their parent directories, so not strictly a tree 

~davereed

public_html mail

Imagesindex.html

reed.jpg logo.gif

dead.letter



3 

5 

Recursively listing files 
to traverse an arbitrary directory structure, need recursion 
 
to list a file system object (either a directory or file):  

1.  print the name of the current object 
2.  if the object is a directory, then  

recursively list each file system object in the directory 

in pseudocode: 

public static void ListAll(FileSystemObject current) { 

 System.out.println(current.getName()); 
 if (current.isDirectory()) { 
   for (FileSystemObject obj : current.getContents()) { 
     ListAll(obj); 

   } 
 } 

} 
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Recursively listing files 
public static void ListAll(FileSystemObject current) { 
 System.out.println(current.getName()); 
 if (current.isDirectory()) { 
   for (FileSystemObject obj : current.getContents()) { 

     ListAll(obj); 
   } 
 } 

} 

~davereed
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Imagesindex.html

reed.jpg logo.gif

dead.letter

this method performs a pre-order 
traversal: prints the root first, then 
the subtrees 
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UNIX du command 
in UNIX, the du command lists the size of all files and directories 

~davereed

public_html mail

Imagesindex.html

reed.jpg logo.gif

dead.letter

2 blocks

3 blocks 3 blocks

1 block

from the ~davereed directory: 
 

unix> du –a 

2  ./public_html/index.html 
3  ./public_html/Images/reed.jpg 
3  ./public_html/Images/logo.gif 

7  ./public_html/Images 
10 ./public_html 
1  ./mail/dead.letter 
2  ./mail 

13 . 

public static int du(FileSystemObject current) { 
 int size = current.blockSize(); 
 if (current.isDirectory()) { 
   for (FileSystemObject obj : current.getContents()) { 
     size += du(obj); 
   } 
 } 
 System.out.println(size + " " + current.getName()); 
 return size; 

} 

this method performs a 
post-order traversal: prints 
the subtrees first, then the 
root 
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How deep is a balanced tree? 

Proof (by induction): 
BASE CASES: when H = 0, 20 - 1 = 0 nodes ü 

    when H = 1, 21 - 1 = 1 node ü 
 
HYPOTHESIS: Assume for all h < H, e.g., a tree with height H-1 can store up to 2H-1 -1 

nodes. 
 
INDUCTIVE STEP: A tree with height H has a root and subtrees with height up to H-1. 
 

     By our hypothesis, T1 and T2 can each store 
     2H-1 -1 nodes, so tree with height H can store up to 

    1 + (2H-1 -1) + (2H-1 -1) =  
    2H-1 + 2H-1 -1 =  
    2H -1 nodes ü 

equivalently:  N nodes can be stored in a binary tree of height ⎡log2(N+1)⎤ 

T1 T2

height
H-1

CLAIM: A binary tree with height H can store up to 2H-1 nodes. 
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Trees & recursion 
since trees are recursive structures, most tree traversal and manipulation 

operations are also recursive 
§  can divide a tree into root + left subtree + right subtree 
§  most tree operations handle the root as a special case, then recursively process 

the subtrees 

§  e.g., to display all the values in a (nonempty) binary tree, divide into  
1.  displaying the root 
2.  (recursively) displaying all the values in the left subtree 
3.  (recursively) displaying all the values in the right subtree 

§  e.g., to count number of nodes in a (nonempty) binary tree, divide into 
1.  (recursively) counting the nodes in the left subtree 
2.  (recursively) counting the nodes in the right subtree 
3.  adding the two counts + 1 for the root 

BinaryTree class 

public class BinaryTree<E> { 
    protected class TreeNode<E> { 

        … 

    } 

    protected TreeNode<E> root; 

 
    public BinaryTree() {  
        this.root = null; 
    } 
 
    public void add(E value) { … } 
 
    public boolean remove(E value) { … } 
 
    public boolean contains(E value) { … } 
 
    public int size() { … } 
 
    public String toString() { … } 

} 
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to implement a binary tree, 
need to link together tree 
nodes 
§  the root of the tree is 

maintained in a field (initially 
null for empty tree) 

§  the root field is "protected" 
instead of "private" to allow 
for inheritance 

§  recall: a protected field is 
accessible to derived 
classes, otherwise private 
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TreeNode class 
    protected class TreeNode<E> { 
        private E data; 
        private TreeNode<E> left; 
        private TreeNode<E> right; 
 
        public TreeNode(E d, TreeNode<E> l, TreeNode<E> r) { 
            this.data = d; 
            this.left = l; 
            this.right = r; 
        } 
 
        public E getData() { return this.data; } 
 
        public TreeNode<E> getLeft() { return this.left; } 
 
        public TreeNode<E> getRight() { return this.right; } 
 
        public void setData(E newData) { this.data = newData; } 
 
        public void setLeft(TreeNode<E> newLeft) { 
            this.left = newLeft; 
        } 
 
        public void setRight(TreeNode<E> newRight) { 
            this.right = newRight; 
        } 
    } 
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virtually same as 
DNode class 

§  change the field 
& method names 
to reflect the 
orientation of 
nodes 

§  uses left/right 
instead of 
previous/next 
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size method 

    public int size() { 
        return this.size(this.root); 
    } 
 
    private int size(TreeNode<E> current) { 
        if (current == null) { 
            return 0; 
        } 
        else { 
            return this.size(current.getLeft()) + 
                   this.size(current.getRight()) + 1; 
        } 
    } 

recursive approach: 
BASE CASE: if the tree is empty, number of nodes is 0 
 

RECURSIVE: otherwise, number of nodes is  
(# nodes in left subtree) + (# nodes in right subtree) + 1 for the root 
 

note: a recursive implementation requires passing the root as parameter 
§  will have a public "front" method, which calls the recursive "worker" method 



7 

13 

contains method 

    public boolean contains(E value) { 
        return this.contains(this.root, value); 
    } 
 
    private boolean contains(TreeNode<E> current, E value) { 
        if (current == null) { 
            return false; 
        } 
        else { 
            return value.equals(current.getData()) || 
                   this.contains(current.getLeft(), value) || 
                   this.contains(current.getRight(), value); 
        } 
    } 

recursive approach: 
BASE CASE: if the tree is empty, the item is not found 
BASE CASE: otherwise, if the item is at the root, then found 
 

RECURSIVE: otherwise, search the left and then right subtrees 
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toString method 

    public String toString() { 
        if (this.root == null) { 
            return "[]"; 
        } 
        String recStr = this.toString(this.root); 
        return "[" + recStr.substring(0,recStr.length()-1) + "]"; 
    } 
 
    private String toString(TreeNode<E> current) { 
        if (current ==  null) { 
            return ""; 
        } 
        return this.toString(current.getLeft()) + 
               current.getData().toString() + "," + 
               this.toString(current.getRight()); 
    } 

must traverse the entire tree and build a string of the items 
§  there are numerous patterns that can be used, e.g., in-order traversal 

BASE CASE: if the tree is empty, then nothing to traverse 
 

RECURSIVE: recursively traverse the left subtree, then access the root, 
   then recursively traverse the right subtree 
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Alternative traversal algorithms 

    private String toString(TreeNode<E> current) { 
        if (current ==  null) { 
            return ""; 
        } 
        return current.getData().toString() + "," + 

       this.toString(current.getLeft()) + 
               this.toString(current.getRight()); 
    } 

    private String toString(TreeNode<E> current) { 
        if (current ==  null) { 
            return ""; 
        } 
        return this.toString(current.getLeft()) + 
               this.toString(current.getRight()) + 
               current.getData().toString() + ","; 
    } 

pre-order traversal: 
BASE CASE: if the tree is 
empty, then nothing to 
traverse 

 

RECURSIVE: access root, 
recursively traverse left 
subtree, then right subtree 

post-order traversal: 
BASE CASE: if the tree is 
empty, then nothing to 
traverse 

 

RECURSIVE: recursively 
traverse left subtree, then 
right subtree, then root 
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Exercises 
/** @return the number of times value occurs in the tree with specified root */ 
public int numOccur(TreeNode<E> root, E value) { 

  
 
 
 
 
} 

/** @return the sum of all the values stored in the tree with specified root */ 
public int sum(TreeNode<Integer> root) {   
 
 

 
 
} 

/** @return the maximum value in the tree with specified root */ 
public int max(TreeNode<Integer> root) { 
 
 

} 
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add method 

    public void add(E value) { 
        this.root = this.add(this.root, value); 
    } 
 
    private TreeNode<E> add(TreeNode<E> current, E value) { 
        if (current == null) { 
            current = new TreeNode<E>(value, null, null); 
        } 
        else if (this.size(current.getLeft()) <= this.size(current.getRight())) { 
            current.setLeft(this.add(current.getLeft(), value)); 
        } 
        else { 
            current.setRight(this.add(current.getRight(), value)); 
        } 
        return current; 
    } 

how do you add to a binary tree? 
§  ideally would like to maintain balance, so (recursively) add to smaller subtree 
§  big Oh? 
§  we will consider more efficient approaches for maintaining balance later 
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remove method 

how do you remove from a binary tree? 
§  tricky, since removing an internal node 

means rerouting pointers 
§  must maintain binary tree structure 
 

simpler solution 
 
1.  find node (as in search) 
2.  if a leaf, simply remove it 
3.  if no left subtree, reroute parent pointer to right subtree 
4. otherwise, replace current value with a leaf value from the left subtree 

(and remove the leaf node) 

  DOES THIS MAINTAIN BALANCE? 
  (you can see the implementation in BinaryTree.java) 
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Induction and trees 
which of the following are true?  prove/disprove 
 

§  in a full binary tree, there are more nodes on the bottom (deepest) level than all 
other levels combined 

§  in any (non-empty) binary tree, there will always be more leaves than non-leaves 

§  in any (non-empty) binary tree, there will always be more empty children (i.e., null 
left or right fields within nodes) than children (i.e., non-null fields) 
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Searching linked lists 
recall: a (linear) linked list only provides sequential access à O(N) searches 

it is possible to obtain O(log N) searches using a tree structure 
 
in order to perform binary search efficiently, must be able to 

§  access the middle element of the list in O(1) 
§  divide the list into halves in O(1) and recurse 

HOW CAN WE GET THIS FUNCTIONALITY FROM A TREE? 

front back
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Binary search trees 
 a binary search tree is a binary tree in which, for every node: 

§  the item stored at the node is ≥ all items stored in its left subtree 
§  the item stored at the node is < all items stored in its right subtree 

in a (balanced) binary search tree: 

•  middle element = root 

•  1st half of list = left subtree 

•  2nd half of list = right subtree 

 

furthermore, these properties hold 
for each subtree 

BinarySearchTree class 

public class BinarySearchTree<E extends Comparable<? super E>>  
extends BinaryTree<E> { 

 

    public BinarySearchTree() { 

        super(); 

    } 

 

    public void add(E value) { 

        // OVERRIDE TO MAINTAIN BINARY SEARCH TREE PROPERTY 

    } 

 

    public void contains(E value) { 

        // OVERRIDE TO TAKE ADVANTAGE OF BINARY SEARCH TREE PROPERTY 

    } 

 

    public void remove(E value) { 

        // DOES THIS NEED TO BE OVERRIDDEN? 

    } 

} 
22 

can use inheritance to derive BinarySearchTree from BinaryTree 
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Binary search in BSTs 

to search a binary search tree: 
1.  if the tree is empty, NOT FOUND 
2.  if desired item is at root, FOUND 
3.  if desired item < item at root, then recursively search the left subtree 
4.  if desired item > item at root, then recursively search the right subtree 

    public boolean contains(E value) { 
        return this.contains(this.root, value); 
    } 
 
    private boolean contains(TreeNode<E> current, E value) { 
        if (current == null) { 
            return false; 
        } 
        else if (value.equals(current.getData())) { 
            return true; 
        } 
        else if (value.compareTo(current.getData()) < 0) { 
            return this.contains(current.getLeft(), value); 
        } 
        else { 
            return this.contains(current.getRight(), value); 
        } 
    } 
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Search efficiency 
how efficient is search on a BST? 

§  in the best case? 
O(1)   if desired item is at the root 

§  in the worst case? 
O(height of the tree)   if item is leaf on the longest path from the root  

in order to optimize worst-case behavior, want a (relatively) balanced tree 
§  otherwise, don't get binary reduction 

§  e.g., consider two trees, each with 7 nodes 
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Search efficiency (cont.) 
we showed that N nodes can be stored in a binary tree of height ⎡log2(N+1)⎤ 
so, in a balanced binary search tree, searching is O(log N) 

N nodes à height of ⎡log2(N+1)⎤ à in worst case, have to traverse ⎡log2(N+1)⎤ nodes 

what about the average-case efficiency of searching a binary search tree? 
§  assume that a search for each item in the tree is equally likely 
§  take the cost of searching for each item and average those costs 

costs of search 
1 

2          +          2 

3    +    3    +    3    +    3 

 

è  17/7     è    2.42 

define the weight of a tree to be the sum of all node depths (root = 1, …) 

average cost of searching a BST = weight of tree / number of nodes in tree 
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Search efficiency (cont.) 

costs of search 
1 

2          +          2 

3    +    3    +    3    +    3 

 

è  17/7     è    2.42 

  

 ~log N 

costs of search 
 
1 

+ 2 
+ 3 
+ 4 
+ 5 
+ 6 
+ 7 

 

è  28/7     è    4.00 

 ~N/2 
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Inserting an item 

inserting into a BST 
1.  traverse edges as in a search 
2. when you reach a leaf, add the 

new node below it 

    public void add(E value) { 
        this.root = this.add(this.root, value); 
    } 
 
    private TreeNode<E> add(TreeNode<E> current, E value) { 
        if (current == null) { 
            return new TreeNode<E>(value, null, null); 
        } 
 
        if (value.compareTo(current.getData()) <= 0) { 
            current.setLeft(this.add(current.getLeft(), value)); 
        } 
        else { 
            current.setRight(this.add(current.getRight(), value)); 
        } 
        return current; 
    } 
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Removing an item 

recall BinaryTree remove 
1.  find node (as in search) 
2.  if a leaf, simply remove it 
3.  if no left subtree, reroute parent pointer to right subtree 
4. otherwise, replace current value with a leaf value from the left subtree (and 

remove the leaf node) 

CLAIM: as long as you select the rightmost (i.e., maximum) value in 
the left subtree, this remove algorithm maintains the BST property 

 
WHY? 
 
 

so, no need to override remove 
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Maintaining balance 

PROBLEM: random insertions (and removals) do not guarantee balance 
§  e.g., suppose you started with an empty tree & added words in alphabetical order 

braves, cubs, giants, phillies, pirates, reds, rockies, … 

with repeated insertions/removals, can degenerate so that height is O(N) 
§  specialized algorithms exist to maintain balance & ensure O(log N) height   
§  or take your chances 

braves 

cubs 

giants 

phillies 


