CSC 421: Algorithm Design & Analysis

Spring 2014

Dynamic programming
= top-down vs. bottom-up
= divide & conquer vs. dynamic programming
= examples: Fibonacci sequence, binomial coefficient
= examples: World Series puzzle, Floyd's algorithm
= top-down with caching
= example: making change
= problem-solving approaches summary

Divide and conquer

divide/decrease & conquer are top-down approaches to problem solving
= start with the problem to be solved (i.e., the top)
= break that problem down into smaller piece(s) and solve
= continue breaking down until reach baseftrivial case (i.e., the bottom)

they work well when the pieces can be solved independently
= e.g., merge sort - sorting each half can be done independently, no overlap

what about Fibonacci numbers? 1,1, 2, 3,5, 8,13, 21, ...

public static int fib(int n) {
if (n <= 1) {
return 1;
}
else {
return fib(n-1) + fib(n-2);
}

Top-down vs. bottom-up

divide and conquer is a horrible way of finding Fibonacci numbers
= the recursive calls are NOT independent; redundencies build up

public static int fib(int n) { .
if (n<= 1) { £ib(5)
return 1;

) fib (4) + fib (3)
else {

return fib (n-1)

fib(3) + fib(2) fib(2) + fib(1)

+ fib(n-2);
}

in this case, a bottom-up solution
makes more sense

= start at the base cases (the bottom)
and work up to the desired number

= requires remembering the previous

public static int fib(int n) {
int prev = 1, current = 1;
for (int i = 1; i < n; i++) {
int next = prev + current;
prev = current;
current = next;
}

return current;

two numbers in the sequence }

Dynamic programming

dynamic programming is a bottom-up approach to solving problems

= start with smaller problems and build up to the goal, storing intermediate
solutions as needed

= applicable to same types of problems as divide/decrease & conquer, but
bottom-up

= usually more effective than top-down if the parts are not completely
independent (thus leading to redundancy)

example: binomial coefficient C(n, k) is relevant to many problems
= the number of ways can you select k lottery balls out of n
= the number of birth orders possible in a family of n children where k are sons
= the number of acyclic paths connecting 2 corners of an kx (n-k) grid
= the coefficient of the x*y™ term in the polynomial expansion of (x + y)"

C(n,k)

g

n!

K (n—k)!

Example: binary coefficient

while easy to define, a binomial coefficient is difficult to compute
€.g, 6 number lottery with 49 balls - 49!/(6!43!)

49! =608,281,864,034,267,560,872,252,163,321,295,376,887,552,831,379,210,240,000,000,000

could try to get fancy by canceling terms from numerator & denominator
= can still can end up with individual terms that exceed integer limits

a computationally easier approach makes use of the following recursive

relationship
n n-1 n-1
= +
k k-1 k

e.g., to select 6 lottery balls out of 49,
partition into:

selections that include 1
(must select 5 out of remaining 48)
+
selections that don't include 1
(must select 6 out of remaining 48)

Example: binomial coefficient

could use straight /”

divide & conquer to -
compute based on -/
this relation

return 1;
}
else {

}

* Calculates n choose k (using divide-and-conquer

* @param n the total number to choose from (n > 0)
@param k the number to choose (0 <= k <= n)

* @return n choose k (the binomial coefficient)

public static int binomial (int n, int k) {
if (k == 0 || n == k) {

return binomial (n-1, k-1) + binomial(n-1, k);

however, this will

take a long time or 48
exceed memory due 5

to redundant work (47)

49

6
48

+
6

))

Dynamic programming solution

0 2 3 k
0 1
could instead work bottom-up, filling a 1]
H H 2 1 1
table starting with the base cases
3 1 1
(whenk =0and n =Kk)
n 1 1
/**
* Calculates n choose k (using dynamic programming)
* @param n the total number to choose from (n > 0)
* @param k the number to choose (0 <= k <= n)
* @return n choose k (the binomial coefficient)
*/
public static int binomial (int n, int k) {
if (n < 2) {
return 1;
else {
int bin[][] = new int[n+1][n+1]; // CONSTRUCT A TABLE TO STORE
for (int r = 0; r <= n; r++) { // COMPUTED VALUES
for (int ¢ = 0; c <= r && c <= k; c++) {
if (¢ == 0 || ¢ == 1r) {
bin[r][c] = 1; // ENTER 1 IF BASE CASE
}
else { // OTHERWISE, USE FORMULA
bin[r][c] = bin[r-1][c-1] + bin[r-1]([c];
}
, }
return bin[n] [k]; // BNSWER IS AT bin[n] [k]
}
}

World Series puzzle

Consider the following puzzle:

At the start of the world series (best-of-7), you must pick the team you want to win and
then bet on games so that

+ if your team wins the series, you win exactly $1,000
« if your team loses the series, you lose exactly $1,000
You may bet different amounts on different games, and can even bet $0 if you wish.

QUESTION: how much should you bet on the first game?

DIVIDE & CONQUER SOLUTION? DYNAMIC PROGRAMMING?

World Series puzzle code

private static double winningsTopDown (int numWins,
if (numWins == GAMES_TO WIN) {

int numLosses) {

return FINAL WORTH;

} divide & conquer solution

else if (numLosses == GAMES_TO_WIN) {
return -FINAL_WORTH;

}

else {
return

(winningsTopDown (numWins+1, numLosses) +

winningsTopDown (numWins, numLosses+1))/2;

}

private static double winningsBottomUp (int numWins, int numLosses) {
double winGrid[][] = new double[GAMES_TO WIN+1] [GAMES_TO WIN+1];
for (int w = GAMES_TO WIN; w >= numWins; w--) {

(int 1 = GAMES TO WIN; 1 >= numLosses; 1l--) {

if (w == GAMES_TO WIN) (
winGrid[w] [1] = FINAL_WORTH;

} . . .

Lloe it (1 = caEs 10 WD) dynamic programming solution
winGrid[w] [1] = -FINAL_WORTH;

for

}

else {
winGrid[w] [1] = (winGrid[w+1][1l]+winGrid[w] [1+1])/2;
}

}

}

return winGrid[numWins] [numLosses];

All-pairs shortest path

recall Dijkstra's algorithm for finding the shortest path between two vertices

in a graph
= simple implementation is O(|V|?)
= trickier implementaion is O((|E| + |V|) log |V])

suppose we wanted to find the shortest paths between all pairs of vertices
= e.g., oracleofbacon.org, baseball-reference.com/oracle/

brute force solution: run Dijkstra's algorithm for every pair
= O(|VP) pairs x O(|V]2) > O(IVI*)
= O(|VP?) pairs x O((|E| + |V} log [V]) = O((EIIVI® + |VF) log |VI)

we can do much better

Floyd's algorithm

Floyd's algorithm uses a dynamic programming approach to find all shortest

path is O(|V|?)

= computes a series of distance matrices D©, D™, ..., DIV

= DOis is the weight matrix for the graph (DOi][j] is weight of edge from v; to v,)

represents the minimum distances if no intermediate vertices are allowed

when calculating the entries in D&
= shortest path connecting v, and v, either uses v, or it doesn't

D" allows paths with v, as intermediate vertex
D@allows paths with v, v, as intermediate vertices

DM allows paths with v, v,, ..., vy, as intermediate vertices (i.e., all paths)

DT[] = min(DE[G], D*DIk] + DKL)

1

Floyd's example

Dol =

ol =

D2l =

D3l =

Dl =

o0 oo o0 oo o0 oo o0 o w

o0 oW

DO = w
DU = min(D g, D[k + DT[])

a b ¢ d
0] ¢ 3 e
2] 0 o o
| 7 0 1
6| = e 0
a b c d
0 [=] 3
[2]0] 5 =
w |7 0 1
6 |« 9 0
a b ¢ d
0 w[3]
2 0 [5] e
[7 (o] 1]
6 « |9 0
a b ¢ d
0 10 3[4
2 0 5 (86
9 7 0|1
[6 16 9 [0
a b c d
0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0

Lengths of the shortast paths
with no intermediate vertices
(DOl is simply the weight matrix).

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 1, i.e., just a

(note two new shortest paths from
bto cand from d to ¢).

Lengths of the shortest paths

with intermediate vertices numbered
not higher than 2, i.e., aand b

(note a new shortest path from ¢ to al.

Lengths of the shortest paths

with intermediate vertices numbered

not higher than 3, i.e., a, b, and ¢

(note four new shortest paths from ato b,
from a to g, from bto d, and from d to b).

Lengths of the shortest paths

with intermediate vertices numberad
not higher than 4, i.e., a, b, ¢c,and d
(note a new shortast path from ¢ to al.

Floyd's algorithm
bottom-up algorithm statement:

D = weight matrix
for k from 1 to |V]:
for 1 from 1 to |V]:
for j from 1 to |V]:
D[i][J] = min(D[i]([3], D[i][k] + D[kI[3])’

clearly, this is O(|V[®)

could be formulated top-down (requires 3 dimensions)
solve(0, i, j) € weight[i][]
solve(k, i, j) € min(solve(k-1, i, j), solve(k-1, i, k) + solve(k-1, k, j))

Dynamic programming & caching

when calculating C(n,k), the entire table must
be filled in (up to the nth row and kth column)

—> working bottom-up from the base cases does
not waste any work

w N e o

for many problems, this is not the case
= solving a problem may require only a subset of smaller problems to be solved

= constructing a table and exhaustively working up from the base cases could do lots
of wasted work

= can dynamic programming still be applied?

Example: programming contest problem

November 13, 2004 ACM North Central North America Regional Programming Contest Problem |

Problem 1: Breaking a Dollar

Using only the U. S. coins werth 1, 5, 10, 25, 50, and 100 cents, there are exactly 293 ways in which
one U. S. dollar can be represented. Canada has no coin with a value of 50 cents, so there are only
243 ways in which one Canadian dollar can be represented. Suppese you are given a new set of
denominations for the coins (each of which we will assume represents some integral number of
cents less than or equal to 100, but greater than 0). In how many ways could 100 cents be
represented?

Input

The input will contain multiple cases. The input for each case will begin with an integer NV (at least 1,
but no more than 10) that indicates the number of unique coin denominations. By wrigue it is meant
that there will not be two (or more) different coins with the same value. The value of NVwill be
followed by AMintegers giving the denominations of the coins.

Input for the last case will be followed by a single integer -1.
Output
For each case, display the case number (they start with 1 and increase sequentially) and the number

of different combinations of those coins that tetal 100 cents. Separate the output for consecutive
cases with a blarnk line.

Sample Input Output for the Sample Input

6 1 5 10 25 50 100 Case 1: 293 combinations of coins
5 1 5 10 25 100

-1 Case 2: 243 combinations of coins

Divide & conquer approach

let getChange (amount, coinList) represent the number of ways to get
an amount using the specified list of coins

getChange (amount, coinList) =
getChange (amount-biggestCoinvValue, coinList) // # of ways that use at least

+ // one of the biggest coin
getChange (amount, coinList-biggestCoin) // # of ways that don't
// involve the biggest coin

e.g., suppose want to get 10¢ using only pennies and nickels
getChange(10, [1¢, 5¢])

/\
getChange(5, [1¢, 5¢]) + getChange(10, [1¢])
/\
getChange(0, [1¢, 5¢]) + getChange(s, [1¢]) 1

1 1

Divide & conquer solution

could implement as a changeMaker class

= when constructing, specify a sorted list of available coins (why sorted?)
= recursive helper method works with a possibly restricted coin list

public class ChangeMaker {
private List<Integer> coins;

public ChangeMaker (List<Integer> coins) {
this.coins = coins;

}

public int getChange (int amount) {

}

private int getChange (int amount, int maxCoinIndex)
if (amount < 0 || maxCoinIndex < 0) {
return 0;
}
else if (amount == 0) {
return 1;
}
else {

return this.getChange (amount, this.coins.size()-1);

{

return this.getChange (amount-this.coins.get (maxCoinIndex), maxCoinIndex) +
this.getChange (amount, maxCoinIndex-1);

|

base case: if amount or max
coin index becomes negative,
then can't be done

base case: if amount is zero,
then have made exact change

recursive case: count how
many ways using a largest coin
+ how many ways not using a
largest coin

Will this solution work?

certainly, it will produce the correct answer -- but, how quickly?

= at most 10 coins
= worstcase: 12345678910

the problem is duplication of effort

getChange (100, 9)

getChange (90, 9) +

getChange (80, 9) + getChange (90, 8)

getChange (80, 6) getChange (80, 6)

getChange (91, 8)

getChange (80, 6)

6,292,069 combinations = depending on your CPU, this can take a while
of combinations will explode if more than 10 coins allowed

getChange (100, 8)

+ getChange (100, 7)

getChange (80, 6)

Caching

we could use dynamic programming and solve the problem bottom up
= however, consider getChange(100, [1¢, 5¢, 10¢, 25¢])
= would we ever need to know getChange(99, [1¢, 5¢, 10¢, 25¢]) ?
getChange(98, [1¢, 5¢, 10¢, 25¢]) ?
getChange(73, [1¢, 5¢]) ?

when exhaustive bottom-up would yield too many wasted cases, dynamic
programming can instead utilize top-down with caching
= create a table (as in the exhaustive bottom-up approach)
= however, fill the table in using a top-down approach

that is, execute a top-down decrease and conquer solution, but store the solutions
to subproblems in the table as they are computed

= before recursively solving a new subproblem, first check to see if its solution has
already been cached

= avoids the duplication of pure top-down
= avoids the waste of exhaustive bottom-up (only solves relevant subproblems)

ChangeMaker with caching as each subproblem is solved, its
public class ChangeMaker (solution is stored in a table

private List<Integer> coins;
Drivics S SOn hE i) | each call to getChange checks the
private ntiill wenembers table first before recursing

public ChangeMaker (List<Integer> coins) {

this.coins = coins;

this.remember = new int[ChangeMaker.MAX AMOUNT+1] [ChangeMaker.MAX COINS];
for (int r = 0; r < ChangeMaker.MAX AMOUNT+1; r++) {
for (int c¢ = 0; c < ChangeMaker.MAX COINS; c++) {

this.remember[r] [c] = -1;
} . .
. with caching, even the
public int getChange (int amount) { WorSt Case IS faSt
return this.getChange (amount, this.coins.size()-1);
} . .
e s _ _ _ 6,292,069 combinations
private int getChange (int amount, int maxCoinIndex) {
if (maxCoinIndex < 0 || amount < 0) {
return 0;
}
else if (this.remember [amount] [maxCoinIndex] == -1) {
if (amount == 0) {
this.remember [amount] [maxCoinIndex] = 1;
}
else {

this.remember [amount] [maxCoinIndex] =
this.getChange (amount-this.coins.get (maxCoinIndex), maxCoinIndex) +
this.getChange (amount, maxCoinIndex-1);

}

return this.remember[amount] [maxCoinIndex];

} 20

}

10

Algorithmic approaches summary

brute force: sometimes the straightforward approach suffices
transform & conquer: sometimes the solution to a simpler variant suffices

divide/decrease & conquer: tackles a complex problem by breaking it into smaller
piece(s), solving each piece (often w/ recursion), and combining into an overall solution
= applicable for any application that can be divided into independent parts

dynamic: bottom-up implementation of divide/decrease & conquer - start with the base
cases and build up to the desired solution, storing results to avoid redundancy

= usually more effective than top-down recursion if the parts are not completely independent
= can implement by adding caching to top-down recursion

greedy: makes a sequence of choices/actions, choose whichever looks best at the moment
= applicable when a solution is a sequence of moves & perfect knowledge is available

backtracking: makes a sequence of choices/actions (similar to greedy), but stores
alternatives so that they can be attempted if the current choices lead to failure
= more costly in terms of time and memory than greedy, but general-purpose

= branch & bound variant cuts off search at some level and backtracks ”

11

