
1 

1 

CSC 421: Algorithm Design & Analysis 
 

Spring 2014 

 
Dynamic programming 

§  top-down vs. bottom-up 

§  divide & conquer vs. dynamic programming  
§  examples: Fibonacci sequence, binomial coefficient 
§  examples: World Series puzzle, Floyd's algorithm 
§  top-down with caching 
§  example: making change 
§  problem-solving approaches summary 

2 

Divide and conquer 
divide/decrease & conquer are top-down approaches to problem solving 

§  start with the problem to be solved (i.e., the top) 
§  break that problem down into smaller piece(s) and solve 
§  continue breaking down until reach base/trivial case (i.e., the bottom) 

they work well when the pieces can be solved independently 
§  e.g., merge sort – sorting each half can be done independently, no overlap 

what about Fibonacci numbers?  1, 1, 2, 3, 5, 8, 13, 21, … 

public static int fib(int n) { 
    if (n <= 1) { 
        return 1; 
    } 
    else { 
        return fib(n-1) + fib(n-2); 
    } 
} 



2 

3 

Top-down vs. bottom-up 
divide and conquer is a horrible way of finding Fibonacci numbers 

§  the recursive calls are NOT independent; redundencies build up 

public static int fib(int n) { 
    if (n <= 1) { 
        return 1; 
    } 
    else { 
        return fib(n-1) + fib(n-2); 
    } 
} 

fib(5) 

fib(4)      +      fib(3) 

fib(3) + fib(2)     fib(2) + fib(1) 
.          .               .            . 

.          .               .            .  

.          .               .            . 

 

in this case, a bottom-up solution 
makes more sense 
§  start at the base cases (the bottom) 

and work up to the desired number 
§  requires remembering the previous 

two numbers in the sequence 

public static int fib(int n) { 
    int prev = 1, current = 1; 
    for (int i = 1; i < n; i++) { 
        int next = prev + current; 
        prev = current; 
        current = next; 
    } 
    return current; 
} 

4 

Dynamic programming 
dynamic programming is a bottom-up approach to solving problems 

§  start with smaller problems and build up to the goal, storing intermediate 
solutions as needed 

§  applicable to same types of problems as divide/decrease & conquer, but 
bottom-up 

§  usually more effective than top-down if the parts are not completely 
independent (thus leading to redundancy) 

example: binomial coefficient C(n, k) is relevant to many problems 
§  the number of ways can you select k lottery balls out of n 
§  the number of birth orders possible in a family of n children where k are sons  
§  the number of acyclic paths connecting 2 corners of an kÍ(n-k) grid  
§  the coefficient of the xkyn-k term in the polynomial expansion of (x + y)n  

)!(!
!),(
knk

n
k
n

knC
−

≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≡



3 

5 

Example: binary coefficient 
while easy to define, a binomial coefficient is difficult to compute 

e.g, 6 number lottery with 49 balls à 49!/(6!43!) 

49! = 608,281,864,034,267,560,872,252,163,321,295,376,887,552,831,379,210,240,000,000,000 
 

could try to get fancy by canceling terms from numerator & denominator 
§  can still can end up with individual terms that exceed integer limits 

a computationally easier approach makes use of the following recursive 
relationship 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

−
≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

k
n

k
n

k
n 1

1
1

e.g., to select 6 lottery balls out of 49, 
partition into: 
 

selections that include 1  
(must select 5 out of remaining 48)  

+ 
selections that don't include 1  

(must select 6 out of remaining 48) 

6 

Example: binomial coefficient 

could use straight 
divide & conquer to 
compute based on 
this relation 

/**  
 * Calculates n choose k (using divide-and-conquer) 
 *   @param n the total number to choose from (n > 0) 
 *   @param k the number to choose (0 <= k <= n) 
 *   @return n choose k (the binomial coefficient) 
 */ 
public static int binomial(int n, int k) { 
    if (k == 0 || n == k) { 
        return 1; 
    } 
    else { 
        return binomial(n-1, k-1) + binomial(n-1, k); 
    } 
} 

however, this will 
take a long time or 
exceed memory due 
to redundant work ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

6
47

5
47

5
47

4
47

6
48

5
48

6
49



4 

7 

Dynamic programming solution 

/**  
 * Calculates n choose k (using dynamic programming) 
 *   @param n the total number to choose from (n > 0) 
 *   @param k the number to choose (0 <= k <= n) 
 *   @return n choose k (the binomial coefficient) 
 */ 
public static int binomial(int n, int k) {  
    if (n < 2) { 
        return 1; 
    } 
    else { 
        int bin[][] = new int[n+1][n+1];        // CONSTRUCT A TABLE TO STORE 
 
        for (int r = 0; r <= n; r++) {          // COMPUTED VALUES 
            for (int c = 0; c <= r && c <= k; c++) { 
                if (c == 0 || c == r) { 
                    bin[r][c] = 1;              // ENTER 1 IF BASE CASE 
                } 
                else {                          // OTHERWISE, USE FORMULA 
                    bin[r][c] = bin[r-1][c-1] + bin[r-1][c]; 
                } 
            } 
        } 
        return bin[n][k];                       // ANSWER IS AT bin[n][k] 
    } 
} 

could instead work bottom-up, filling a 
table starting with the base cases 
(when k = 0 and n = k) 

0 1 2 3 … k 

0 1 

1 1 1 

2 1 1 

3 1 1 

… … … 

n 1 1 

8 

World Series puzzle 
Consider the following puzzle: 
 

At the start of the world series (best-of-7), you must pick the team you want to win and 
then bet on games so that  
•  if your team wins the series, you win exactly $1,000 
•  if your team loses the series, you lose exactly $1,000 

You may bet different amounts on different games, and can even bet $0 if you wish. 
 
QUESTION: how much should you bet on the first game? 
 

 
DIVIDE & CONQUER SOLUTION?  DYNAMIC PROGRAMMING? 



5 

World Series puzzle code 
private static double winningsTopDown(int numWins, int numLosses) { 
    if (numWins == GAMES_TO_WIN) { 
        return FINAL_WORTH; 
    } 
    else if (numLosses == GAMES_TO_WIN) { 
        return -FINAL_WORTH; 
    } 
    else { 
        return (winningsTopDown(numWins+1, numLosses) + 
                winningsTopDown(numWins, numLosses+1))/2; 
    } 
} 

9 

private static double winningsBottomUp(int numWins, int numLosses) { 
    double winGrid[][] = new double[GAMES_TO_WIN+1][GAMES_TO_WIN+1]; 
    for (int w = GAMES_TO_WIN; w >= numWins; w--) { 
        for (int l = GAMES_TO_WIN; l >= numLosses; l--) { 
            if (w == GAMES_TO_WIN) { 
                winGrid[w][l] = FINAL_WORTH; 
            } 
            else if (l == GAMES_TO_WIN) { 
                winGrid[w][l] = -FINAL_WORTH; 
            } 
            else { 
                winGrid[w][l] = (winGrid[w+1][l]+winGrid[w][l+1])/2; 
            } 
        } 
    } 
    return winGrid[numWins][numLosses]; 
} 

divide & conquer solution 

dynamic programming solution 

All-pairs shortest path 
recall Dijkstra's algorithm for finding the shortest path between two vertices 

in a graph  
§  simple implementation is O(|V|2) 
§  trickier implementaion is O((|E| + |V|) log |V|) 

 
suppose we wanted to find the shortest paths between all pairs of vertices 

§  e.g., oracleofbacon.org, baseball-reference.com/oracle/ 

10 

brute force solution: run Dijkstra's algorithm for every pair 
§  O(|V|2) pairs x O(|V|2) à O(|V|4) 
§  O(|V|2) pairs x O((|E| + |V|) log |V|) à O((|E||V|2 + |V|3) log |V|)  

we can do much better 



6 

Floyd's algorithm 
Floyd's algorithm uses a dynamic programming approach to find all shortest 

path is O(|V|3) 
§  computes a series of distance matrices D(0), D(1), …, D(|V|) 

§  D(0) is is the weight matrix for the graph (D(0)[i][j] is weight of edge from vi to vj) 
represents the minimum distances if no intermediate vertices are allowed 

§  D(1) allows paths with v1 as intermediate vertex 
§  D(2) allows paths with v1, v2 as intermediate vertices 
§  … 
§  D(|V|) allows paths with v1, v2, …, v|V| as intermediate vertices (i.e., all paths) 

when calculating the entries in D(k) 

§  shortest path connecting vi and vj either uses vk or it doesn't 

D(k)[i][j] = min(D(k-1)[i][j], D(k-1)[i][k] + D(k-1)[k][j] )  

 
 
 

11 

Floyd's example 

12 

D(0)[i][j] = wij 
D(k)[i][j] = min(D(k-1)[i][j], D(k-1)[i][k] + D(k-1)[k][j] )  



7 

Floyd's algorithm 
bottom-up algorithm statement: 
 

D = weight matrix 
for k from 1 to |V|: 
    for i from 1 to |V|: 
        for j from 1 to |V|: 
            D[i][j] = min( D[i][j], D[i][k] + D[k][j] ); 
 
 

clearly, this is O(|V|3) 
 
could be formulated top-down (requires 3 dimensions) 

solve(0, i, j) ß weight[i][j] 

solve(k, i, j) ß min( solve(k-1, i, j), solve(k-1, i, k) + solve(k-1, k, j) ) 

 
13 

14 

Dynamic programming & caching 

when calculating C(n,k), the entire table must 
be filled in (up to the nth row and kth column) 

à working bottom-up from the base cases does 
not waste any work 

0 1 2 3 … k 

0 1 

1 1 1 

2 1 1 

3 1 1 

… … … 

n 1 1 

for many problems, this is not the case 
§  solving a problem may require only a subset of smaller problems to be solved 
§  constructing a table and exhaustively working up from the base cases could do lots 

of wasted work 

§  can dynamic programming still be applied? 



8 

15 

Example: programming contest problem 

16 

Divide & conquer approach 
let getChange(amount, coinList) represent the number of ways to get 

an amount using the specified list of coins 
 

getChange(amount, coinList) =  

 getChange(amount-biggestCoinValue, coinList) // # of ways that use at least 

 +           //   one of the biggest coin 

 getChange(amount, coinList-biggestCoin)      // # of ways that don't 

           //   involve the biggest coin 

e.g., suppose want to get 10¢ using only pennies and nickels 
                                    

                                                    getChange(10, [1¢, 5¢])   
 
              getChange(5, [1¢, 5¢])           +            getChange(10, [1¢]) 

getChange(0, [1¢, 5¢])  +  getChange(5, [1¢])                        1 
 
             1                                        1 
 



9 

17 

Divide & conquer solution 

public class ChangeMaker { 
    private List<Integer> coins; 
     
    public ChangeMaker(List<Integer> coins) { 
        this.coins = coins; 
    } 
     
    public int getChange(int amount) { 
        return this.getChange(amount, this.coins.size()-1); 
    } 
     
    private int getChange(int amount, int maxCoinIndex) { 
        if (amount < 0 || maxCoinIndex < 0) {   

         return 0; 
     } 
     else if (amount == 0) {     

            return 1; 
     } 
     else {       

            return this.getChange(amount-this.coins.get(maxCoinIndex), maxCoinIndex) + 
                   this.getChange(amount, maxCoinIndex-1); 

     } 
    } 
} 

base case: if amount or max 
coin index becomes negative, 
then can't be done 

base case: if amount is zero, 
then have made exact change 

recursive case:  count how 
many ways using a largest coin 
+ how many ways not using a 
largest coin 

could implement as a ChangeMaker class 
§  when constructing, specify a sorted list of available coins  (why sorted?) 
§  recursive helper method works with a possibly restricted coin list 

18 

Will this solution work? 
certainly, it will produce the correct answer -- but, how quickly? 

§  at most 10 coins 
§  worst case: 1 2 3 4 5 6 7 8 9 10 

§  6,292,069 combinations à depending on your CPU, this can take a while 
§  # of combinations will explode if more than 10 coins allowed 

the problem is duplication of effort 
 

getChange(100, 9)  
 

getChange(90, 9)                +                getChange(100, 8) 

 
getChange(80, 9) + getChange(90, 8)              getChange(91, 8) + getChange(100, 7) 

       . . .              . . .                            . . .              . . . 
      .  .  .            .  .  .                          .  .  .            .  .  .  

     .   .   .          .   .   .                        .   .   .          .   .   .  
         .                  .                                .                  .  
         .                  .                                .                  . 
  getChange(80, 6)   getChange(80, 6)                 getChange(80, 6)   getChange(80, 6) 



10 

19 

Caching 
we could use dynamic programming and solve the problem bottom up 

§  however, consider getChange(100, [1¢, 5¢, 10¢, 25¢]) 
§  would we ever need to know getChange(99, [1¢, 5¢, 10¢, 25¢]) ? 

                 getChange(98, [1¢, 5¢, 10¢, 25¢]) ? 
                 getChange(73, [1¢, 5¢]) ? 

when exhaustive bottom-up would yield too many wasted cases, dynamic 
programming can instead utilize top-down with caching 
§  create a table (as in the exhaustive bottom-up approach)   
§  however, fill the table in using a top-down approach 

that is, execute a top-down decrease and conquer solution, but store the solutions 
to subproblems in the table as they are computed 

§  before recursively solving a new subproblem, first check to see if its solution has 
already been cached 

§  avoids the duplication of pure top-down 
§  avoids the waste of exhaustive bottom-up (only solves relevant subproblems) 

20 

ChangeMaker with caching 
public class ChangeMaker { 
    private List<Integer> coins; 
     
    private static final int MAX_AMOUNT = 100; 
    private static final int MAX_COINS = 10; 
    private int[][] remember; 
     
    public ChangeMaker(List<Integer> coins) { 
        this.coins = coins; 
 
        this.remember = new int[ChangeMaker.MAX_AMOUNT+1][ChangeMaker.MAX_COINS]; 
        for (int r = 0; r < ChangeMaker.MAX_AMOUNT+1; r++) { 
            for (int c = 0; c < ChangeMaker.MAX_COINS; c++) { 
                this.remember[r][c] = -1; 
            } 
        }    
    } 
     
    public int getChange(int amount) { 
        return this.getChange(amount, this.coins.size()-1); 
    } 
     
    private int getChange(int amount, int maxCoinIndex) { 
        if (maxCoinIndex < 0 || amount < 0) { 
            return 0; 
        } 
        else if (this.remember[amount][maxCoinIndex] == -1) { 
            if (amount == 0) {     

             this.remember[amount][maxCoinIndex] = 1; 
         } 
         else {       
             this.remember[amount][maxCoinIndex] =  

                    this.getChange(amount-this.coins.get(maxCoinIndex), maxCoinIndex) + 
                    this.getChange(amount, maxCoinIndex-1); 

         } 
        } 
        return this.remember[amount][maxCoinIndex]; 
    } 
} 

with caching, even the 
worst case is fast: 

6,292,069 combinations 

as each subproblem is solved, its 
solution is stored in a table 

each call to getChange checks the 
table first before recursing 



11 

21 

Algorithmic approaches summary 
brute force: sometimes the straightforward approach suffices 
transform & conquer: sometimes the solution to a simpler variant suffices 
 

divide/decrease & conquer: tackles a complex problem by breaking it into smaller 
piece(s), solving each piece (often w/ recursion), and combining into an overall solution 
§  applicable for any application that can be divided into independent parts 

dynamic: bottom-up implementation of divide/decrease & conquer – start with the base 
cases and build up to the desired solution, storing results to avoid redundancy 
§  usually more effective than top-down recursion if the parts are not completely independent 
§  can implement by adding caching to top-down recursion 

greedy: makes a sequence of choices/actions, choose whichever looks best at the moment 
§  applicable when a solution is a sequence of moves & perfect knowledge is available 

backtracking: makes a sequence of choices/actions (similar to greedy), but stores 
alternatives so that they can be attempted if the current choices lead to failure 
§  more costly in terms of time and memory than greedy, but general-purpose 
§  branch & bound variant cuts off search at some level and backtracks 
 


