
1

1

CSC 421: Algorithm Design & Analysis

Spring 2016

Backtracking

§  greedy vs. backtracking (DFS)
§  greedy vs. generate & test
§  examples:

N-queens, 2-D gels, Boggle
§  branch & bound
§  problem characteristics
§  aside: game trees

2

Greed is good?

IMPORTANT: the greedy approach is not
applicable to all problems

§  but when applicable, it is very effective (no planning
or coordination necessary)

GREEDY approach for N-Queens: start with first row,
find a valid position in current row, place a queen in that
position then move on to the next row

since queen placements are not independent, local choices do not
necessarily lead to a global solution

GREEDY does not work – need a more holistic approach

2

3

Generate & test?
recall the generate & test solution to
N-queens

§  systematically generate every
possible arrangement

§  test each one to see if it is a valid
solution

fortunately, we can do better if we recognize that choices can constrain
future choices
§  e.g., any board arrangement with a queen at (1,1) and (2,1) is invalid
§  no point in looking at the other queens, so can eliminate 16 boards from

consideration

§  similarly, queen at (1,1) and (2,2) is invalid, so eliminate another 16 boards

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

4
16

= 1,820 arrangements

4

Backtracking

backtracking is a smart way of doing generate & test
§  view a solution as a sequence of choices/actions (similar to GREEDY)
§  when presented with a choice, pick one (similar to GREEDY)
§  however, reserve the right to change your mind and backtrack to a previous choice

(unlike GREEDY)

§  you must remember alternatives:
if a choice does not lead to a solution, back up and try an alternative

§  eventually, backtracking will find a solution or exhaust all alternatives

backtracking is essentially depth first search
§  add ability to prune a path as soon as we know it can't succeed
§  when that happens, back up and try another path

3

5

/**
 * Fills the board with queens starting at specified row
 * (Queens have already been placed in rows 0 to row-1)
 */
private boolean placeQueens(int row) {
 if (ROW EXTENDS BEYOND BOARD) {
 return true;
 }
 else {
 for (EACH COL IN ROW) {
 if ([ROW][COL] IS NOT IN JEOPARDY FROM EXISTING QUEENS) {
 ADD QUEEN AT [ROW][COL]

 if (this.placeQueens(row+1)) {
 return true;
 }
 else {
 REMOVE QUEEN FROM [ROW][COL]
 }
 }
 }
 return false;
 }
}

N-Queens psuedocode

if row > board size, then all queens
have been placed already – return
true

place a queen in available column

if can recursively place the
remaining queens, then done

if not, remove the queen just placed
and continue looping to try other
columns

return false if cannot place
remaining queens

6

Chessboard class

public class ChessBoard {
 private ChessPiece[][] board; // 2-D array of chess pieces
 private int pieceCount; // number of pieces on the board

 public ChessBoard(int size) {…} // constructs size-by-size board
 public ChessPiece get(int row, int col) {…} // returns piece at (row,col)
 public void remove(int row, int col) {…} // removes piece at (row,col)
 public void add(int row, int col, ChessPiece p) {…} // places a piece, e.g., a queen,

 // at (row,col)
 public boolean inJeopardy(int row, int col) {..} // returns true if (row,col) is

 // under attack by any piece
 public int numPieces() {…} // returns number of pieces on board
 public int size() {…} // returns the board size
 public String toString() {…} // converts board to String
}

we could define a class hierarchy for chess pieces
•  ChessPiece is an abstract class that specifies the common behaviors of pieces
•  Queen, Knight, Pawn, … are derived from ChessPiece and implement specific behaviors

ChessPiece

Queen King Bishop Rook Knight Pawn

4

7

Backtracking N-queens
public class NQueens {
 private ChessBoard board;

 . . .

 /**
 * Fills the board with queens.
 */
 public boolean placeQueens() {
 return this.placeQueens(0);
 }

 /**
 * Fills the board with queens starting at specified row
 * (Queens have already been placed in rows 0 to row-1)
 */
 private boolean placeQueens(int row) {
 if (row >= this.board.size()) {
 return true;
 }
 else {
 for (int col = 0; col < this.board.size(); col++) {
 if (!this.board.inJeopardy(row, col)) {
 this.board.add(row, col, new Queen());

 if (this.placeQueens(row+1)) {
 return true;
 }
 else {
 this.board.remove(row, col);
 }
 }
 }
 return false;
 }
 }
}

BASE CASE: if all queens
have been placed, then done.

OTHERWISE: try placing
queen in the row and recurse
to place the rest

note: if recursion fails, must
remove the queen in order to
backtrack

in an NQueens class, will
have a ChessBoard field and
a method for placing the
queens

•  placeQueens calls a
helper method with a row
parameter

8

Why does backtracking work?
backtracking burns no bridges – all
choices are reversible

backtracking provides a systematic
way of trying all paths (sequences
of choices) until a solution is found

§  assuming the search tree is finite,
will eventually find a solution or
exhaust the entire search space

backtracking is different from
generate & test in that choices are
made sequentially

§  earlier choices constrain later ones
§  can avoid searching entire

branches

!

!
!

!
!

!
!

X X

!
!
!

!
!

!

X X

!
!

!

!
!

!

X X

5

9

Another example: blob count
application: 2-D gel electrophoresis

§  biologists use electrophoresis to produce a gel
image of cellular material

§  each "blob" (contiguous collection of dark
pixels) represents a protein

§  identify proteins by matching the blobs up with
another known gel image

we would like to identify each blob, its location and size
§  location is highest & leftmost pixel in the blob
§  size is the number of contiguous pixels in the blob

§  in this small image: Blob at [0][1]: size 5
 Blob at [2][7]: size 1
 Blob at [6][0]: size 4
 Blob at [6][6]: size 4

§  can use backtracking to locate & measure blobs

10

Blob count (cont.)
can use recursive backtracking to get a blob's size

when find a spot:
1 (for the spot) +
size of all connected subblobs (adjacent to spot)

note: we must not double count any spots
§  when a spot has been counted, must "erase" it
§  keep it erased until all blobs have been counted

private int blobSize(int row, int col) {
 if (OFF THE GRID || NOT A SPOT) {
 return 0;
 }
 else {
 ERASE SPOT;
 return 1 + this.blobSize(row-1, col-1)
 + this.blobSize(row-1, col)
 + this.blobSize(row-1, col+1)
 + this.blobSize(row, col-1)
 + this.blobSize(row, col+1)
 + this.blobSize(row+1, col-1)
 + this.blobSize(row+1, col)
 + this.blobSize(row+1, col+1);
 }
}

pseudocode:

6

11

Blob count (cont.) public class Gel{
 private char[][] grid;

 . . .

 public void findBlobs() {
 for (int row = 0; row < this.grid.length; row++) {
 for (int col = 0; col < this.grid.length; col++) {
 if (this.grid[row][col] == '*') {
 System.out.println("Blob at [" + row + "][" +
 col + "] : size " +
 this.blobSize(row, col));
 }
 }
 }

 for (int row = 0; row < this.grid.length; row++) {
 for (int col = 0; col < this.grid.length; col++) {
 if (this.grid[row][col] == 'O') {
 this.grid[row][col] = '*';
 }
 }
 }
 }

 private int blobSize(int row, int col) {
 if (row < 0 || row >= this.grid.length ||
 col < 0 || col >= this.grid.length ||
 this.grid[row][col] != '*') {
 return 0;
 }
 else {
 this.grid[row][col] = 'O';
 return 1 + this.blobSize(row-1, col-1)
 + this.blobSize(row-1, col)
 + this.blobSize(row-1, col+1)
 + this.blobSize(row, col-1)
 + this.blobSize(row, col+1)
 + this.blobSize(row+1, col-1)
 + this.blobSize(row+1, col)
 + this.blobSize(row+1, col+1);
 }
 }
}

findBlobs traverses the
image, checks each grid
pixel for a blob

each pixel is "erased" after it
is processed in blobSize
to avoid double-counting (&
infinite recursion)

the image is restored at the
end of findBlobs

blobSize uses
backtracking to expand in all
directions once a blob is
found

12

Another example: Boggle

recall the game
§  random letters are placed in a 4x4 grid
§  want to find words by connecting adjacent

letters (cannot reuse the same letter)

§  for each word found, the player earns points
= length of the word

§  the player who earns the most points after 3
minutes wins

how do we automate the search for words?

7

13

Boggle (cont.)
can use recursive backtracking to search for a word

when the first letter is found:
remove first letter & recursively search for remaining letters

again, we must not double count any letters
§  must "erase" a used letter, but then restore for later searches

private boolean findWord(String word, int row, int col) {
 if (WORD IS EMPTY) {
 return true;
 }
 else if (OFF_THE_GRID || GRID LETTER != FIRST LETTER OF WORD) {
 return false;
 }
 else {
 ERASE LETTER;
 String rest = word.substring(1, word.length());
 boolean result = this.findWord(rest, row-1, col-1) ||
 this.findWord(rest, row-1, col) ||
 this.findWord(rest, row-1, col+1) ||
 this.findWord(rest, row, col-1) ||
 this.findWord(rest, row, col+1) ||
 this.findWord(rest, row+1, col-1) ||
 this.findWord(rest, row+1, col) ||
 this.findWord(rest, row+1, col+1);
 RESTORE LETTER;
 return result;
 }
}

pseducode:

G A U T

P R M R

D O L A

E S I C

14

BoggleBoard class

can define a
BoggleBoard class that
represents a board
§  has public method for

finding a word

§  it calls the private method
that implements recursive
backtracking

§  also needs a constructor
for initializing the board
with random letters

§  also needs a toString
method for easily
displaying the board

public class BoggleBoard {
 private char[][] board;

 . . .

 public boolean findWord(String word) {
 for (int row = 0; row < this.board.length; row++) {
 for (int col = 0; col < this.board.length; col++) {
 if (this.findWord(word, row, col)) {
 return true;
 }
 }
 }
 return false;
 }

 private boolean findWord(String word, int row, int col) {
 if (word.equals("")) {
 return true;
 }
 else if (row < 0 || row >= this.board.length ||
 col < 0 || col >= this.board.length ||
 this.board[row][col] != word.charAt(0)) {
 return false;
 }
 else {
 char safe = this.board[row][col];
 this.board[row][col] = '*';
 String rest = word.substring(1, word.length());
 boolean result = this.findWord(rest, row-1, col-1) ||
 this.findWord(rest, row-1, col) ||
 this.findWord(rest, row-1, col+1) ||
 this.findWord(rest, row, col-1) ||
 this.findWord(rest, row, col+1) ||
 this.findWord(rest, row+1, col-1) ||
 this.findWord(rest, row+1, col) ||
 this.findWord(rest, row+1, col+1);
 this.board[row][col] = safe;
 return result;
 }
 }

 . . .
}

8

15

BoggleGame class

a separate class can
implement the game
functionality
§  constructor creates the

board and fills
unguessedWords
with all found words

§  makeGuess checks to
see if the word is valid
and has not been
guessed, updates the
sets accordingly

§  also need methods for
accessing the
guessedWords,
unguessedWords,
and the board (for
display)

see BoggleGUI

public class BoggleGame {
 private final static String DICT_FILE = "dictionary.txt";
 private BoggleBoard board;
 private Set<String> guessedWords;
 private Set<String> unguessedWords;

 public BoggleGame() {
 this.board = new BoggleBoard();
 this.guessedWords = new TreeSet<String>();
 this.unguessedWords = new TreeSet<String>();

 try {
 Scanner dictFile = new Scanner(new File(DICT_FILE));
 while (dictFile.hasNext()) {
 String nextWord = dictFile.next();
 if (this.board.findWord(nextWord)) {
 this.unguessedWords.add(nextWord);
 }
 }
 }
 catch (java.io.FileNotFoundException e) {
 System.out.println("DICTIONARY FILE NOT FOUND");
 }
 }

 public boolean makeGuess(String word) {
 if (this.unguessedWords.contains(word)) {
 this.unguessedWords.remove(word);
 this.guessedWords.add(word);
 return true;
 }
 return false;
 }

 . . .
}

Branch & bound

the central idea of backtracking is cutting off a branch of the search as soon
as we see that it can't lead to a solution
§  then, backtrack and try a different branch

e.g., for the shortest path problem
§  we cut off a branch if the vertex was a dead end
§  we also cut it off if its length exceeded that of an already found path

what if we also had the ability to look ahead?
§  i.e., if we could tell ahead of time (using some deduction) that a branch was not

going to work, then we could preemptively cut
§  this variant of backtracking is known as branch & bound

16

9

B & B example
suppose you have four jobs and 4 contractors (with bids), and want to

assign the jobs to the contractors to minimize cost

§  e.g., a à 1, b à 2, c à 3, d à 4 9 + 4 + 1 + 4 = $18K total

§  e.g., a à 2, b à 3, c à 1, d à 4 2 + 3 + 5 + 4 = $14K total

generate & test?

17

job 1 job 2 job 3 job 4
contractor a $9K $2K $7K $8K
contractor b $6K $4K $3K $7K
contractor c $5K $8K $1K $8K
contractor d $7K $6K $9K $4K

B & B example (cont.)

note that there is a (possibly unobtainable) lower bound on the bid total
§  you can't possibly do better than assigning every contractor their lowest bid
§  here, 2 + 3 + 1 + 4 = $10K is a lower bound
§  (it is not even achievable, since b & c are assigned the same job)

the lower bound gives us a basis for choosing one branch over another

§  i.e., use a greedy approach to select the branch with smallest lower bound
lb = cost of bids assigned so far + minimal bids possible for remaining contractors

18

job 1 job 2 job 3 job 4

contractor a $9K $2K $7K $8K

contractor b $6K $4K $3K $7K

contractor c $5K $8K $1K $8K

contractor d $7K $6K $9K $4K

10

B & B example (cont.)

at each step, choose the vertex/state with smallest lower bound, and extend
§  can cut off a branch if its lb exceeds the cost of a found solution

19

job 1 job 2 job 3 job 4

contractor a $9K $2K $7K $8K

contractor b $6K $4K $3K $7K

contractor c $5K $8K $1K $8K

contractor d $7K $6K $9K $4K

20

Interesting aside: B & B search in game playing
consider games involving:

§  2 players
§  perfect information
§  zero-sum (player's gain is opponent's loss)

examples: tic-tac-toe, checkers, chess, othello, …
non-examples: poker, backgammon, prisoner's dilemma, …

von Neumann (the father of game theory) showed that for such games, there
is always a "rational" strategy
§  that is, can always determine a best move, assuming the opponent is equally

rational

X
X

what is X's
rational move?

O

O

11

21

Game trees
idea: model the game as a search tree

§  associate a value with each game state (possible since zero-sum)
player 1 wants to maximize the state value (call him/her MAX)
player 2 wants to minimize the state value (call him/her MIN)

§  players alternate turns, so differentiate MAX and MIN levels in the tree

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

player 1's move (MAX)

player 1's move (MAX)

player 2's move (MIN)

 the leaves of the tree will be end-of-game states

22

Minimax search

can visualize the search bottom-up (start at leaves, work up to root)
likewise, can search top-down using recursion

WIN
FOR
MAX

WIN
FOR
MIN

WIN
FOR
MAX

WIN
FOR
MAX

WIN
FOR
MIN

WIN
FOR
MIN

player 1's move (MAX)

player 1's move (MAX)

player 2's move (MIN)

minimax search:
§  at a MAX level, take the maximum of all possible moves
§  at a MIN level, take the minimum of all possible moves

12

23

Minimax example

O
X

O
X

O
X's move (MAX)

O
X

O
X X
O

O
X

O
X X
O

O
X

O O
O's move (MIN)

X

X

O
X

O
X X
O

O X
O
X

O
X X
O

O

X
X's move (MAX)

O

O

DRAW O (MIN) WINS

24

In-class exercise

X

OX

O
X's move (MAX)

O
X

13

25

Minimax in practice
while Minimax Principle holds for all 2-party, perfect info, zero-sum games,

an exhaustive search to find best move may be infeasible

EXAMPLE: in an average chess game, ~100 moves with ~35 options/move
à ~35100 states in the search tree!

practical alternative: limit the search depth and use heuristics
§  expand the search tree a limited number of levels (limited look-ahead)
§  evaluate the "pseudo-leaves" using a heuristic

high value à good for MAX low value à good for MIN
back up the heuristic estimates to determine the best-looking move

at MAX level, take maximum at MIN level, take minimum

MAX

MIN

4 -2 0

MAX

MIN

5 -2 14-3

26

Tic-tac-toe example
 1000 if win for MAX (X)

heuristic(State) = -1000 if win for MIN (O)
 (#rows/cols/diags open for MAX –
 #rows/cols/diags open for MIN) otherwise

suppose look-ahead of 2 moves

{

X
X

X
O

X

O
4-5 = -1 5-5 = 0

X

XO

5-5 = 0 XO

6-5 = 1

X

O
6-5 = 1

X
O

X

O
4-6 = -2

XO

5-6 = -1 X
O

6-6 = 0

X

O
6-6 = 0

5-6 = -1

X
O

6-4=2

O

5-4 = 1

X

14

27

α-β bounds
sometimes, it isn't necessary to search the entire tree

5 10 2 ??? -10 3 5 ???

α-β technique: associate bonds with state in the search
§  associate lower bound α with MAX: can increase
§  associate upper bound β with MIN: can decrease

5

>= 5 (α)

3

<= 3 (β)

28

α-β pruning
discontinue search below a MIN node if β value <= α value of ancestor

5

>= 5 (α)

<= 3 (β)

already searched

no need to search

discontinue search below a MAX node if α value >= β value of ancestor

5 10 2 ???

-10 3 6 ???

3

<= 3 (β)

>= 5 (α)

already searched

no need to search

15

29

larger example

5 3 7 1 3 4 6 8

30

tic-tac-toe example

X
X

X
O

X

O
4-5 = -1 5-5 = 0

X

XO

5-5 = 0 XO

6-5 = 1

X

O
6-5 = 1

X
O

X

O
4-6 = -2

XO

5-6 = -1 X
O

6-6 = 0

X

O
6-6 = 0

5-6 = -1

X
O

6-4=2

O

5-4 = 1

X

α-β vs. minimax:
worst case: α-β examines as many states as minimax
best case: assuming branching factor B and depth D, α-β examines ~2bd/2 states

 (i.e., as many as minimax on a tree with half the depth)

16

Iterative deepening
a common approach in game search is to set a lookahead range

§  e.g., in chess, lookahead 4 moves (by each player) and rate boards at that stage
§  this catches wins/losses within that range
§  presumably, you can better judge the state of the game in the future

if decisions are timed,
§  you can pick a conservative lookahead range to ensure a choice is made
§  if time remains, extend the lookahead range and try again
§  each iteration looks deeper and so makes a more informed choice

clearly, there is redundancy with iterative deepening

§  lookead search of (n+1) levels must reproduce the search for n levels
§  HOW COSTLY IS THIS?

31

32

Algorithmic approaches summary (so far)

brute force: sometimes the straightforward approach suffices

transform & conquer: sometimes the solution to a simpler variant suffices

divide/decrease & conquer: tackles a complex problem by breaking it into smaller
piece(s), solving each piece (often w/ recursion), and combining into an overall solution
§  applicable for any application that can be divided into smaller or independent parts

greedy: makes a sequence of choices/actions, choose whichever looks best at the moment
§  applicable when a solution is a sequence of moves & perfect knowledge is available

backtracking: makes a sequence of choices/actions (similar to greedy), but stores
alternatives so that they can be attempted if the current choices lead to failure
§  more costly in terms of time and memory than greedy, but general-purpose
§  branch & bound variant cuts off search at some level and backtracks

