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CSC 421: Algorithm Design & Analysis 
 

Spring 2016 

 
Greedy algorithms 

§  greedy algorithms 
examples: optimal change, job scheduling 

§  Prim's algorithm (minimal spanning tree) 
§  Dijkstra's algorithm (shortest path) 
§  Huffman codes (data compression) 
§  applicability 
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Greedy algorithms 
the greedy approach to problem solving  involves making a sequence of 
choices/actions, each of which simply looks best at the moment 
 

 local view: choose the locally optimal option 
 hopefully, a sequence of locally optimal solutions leads to a globally optimal solution 

example: optimal change 
§  given a monetary amount, make change using the fewest coins possible 

 amount = 16¢  coins? 
 

 amount = 96¢  coins? 
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Example: greedy change 
while the amount remaining is not 0: 

§  select the largest coin that is ≤ the amount remaining 
§  add a coin of that type to the change 
§  subtract the value of that coin from the amount remaining  

e.g., 96¢ = 50¢ + 25¢ + 10¢ + 10¢ + 1¢ 
 

will this greedy algorithm always yield the optimal solution? 

for U.S. currency, the answer is YES 
 

for arbitrary coin sets, the answer is NO 
§  suppose the U.S. Treasury added a 12¢ coin 

GREEDY:  16¢ = 12¢ + 1¢ + 1¢ + 1¢ + 1¢  (5 coins) 
 
OPTIMAL: 16¢ = 10¢ + 5¢ + 1¢   (3 coins) 
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Example: job scheduling 

suppose you have a collection of jobs to execute and know their lengths 
§  want to schedule the jobs so as to minimize waiting time 

Job 1:    5 minutes  Schedule 1-2-3: 0 + 5 + 15 = 20 minutes waiting 
Job 2:  10 minutes  Schedule 3-2-1: 0 + 4 + 14 = 18 minutes waiting 
Job 3:    4 minutes  Schedule 3-1-2: 0 + 4 + 9 = 13 minutes waiting 
 

GREEDY ALGORITHM: do the shortest job first 
 

i.e., while there are still jobs to execute, schedule the shortest remaining job 

does the greedy approach guarantee the optimal schedule?  efficiency? 
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Application: minimal spanning tree 
consider the problem of finding a minimal spanning tree of a graph 

§  a spanning tree of a graph G is a tree (no cycles) made up of all the vertices 
and a subset of the edges of G 

§  a minimal spanning tree for a weighted graph G is a spanning tree with minimal 
total weight 

§  minimal spanning trees arise in many real-world applications 
e.g., wiring a network of computers; connecting rural houses with roads 
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example from http://compprog.wordpress.com/ 

spanning tree? 
 
minimal spanning tree? 

Prim's algorithm 
to find a minimal spanning tree (MST): 

1.  select any vertex as the root of the tree 
2.  repeatedly, until all vertices have been added: 

a)  find the lowest weight edge with exactly one vertex in the tree 
b)  select that edge and vertex and add to the tree 

6 



4 

Prim's algorithm 
to find a minimal spanning tree (MST): 

1.  select any vertex as the root of the tree 
2.  repeatedly, until all vertices have been added: 

a)  find the lowest weight edge with exactly one vertex in the tree 
b)  select that edge and vertex and add to the tree 
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minimal spanning tree? 
 
is it unique? 

Correctness of Prim's algorithm 
Proof (by induction): Each subtree T1, T1, …, T|V| in Prim's algorithm is 

contained in a MST.  [Thus, T|V|  is a MST.] 
BASE CASE: T1 contains a single vertex, so is contained in a MST. 
 
ASSUME: T1, …, Ti-1 are contained in a MST. 
 
STEP: Must show Ti is contained in a MST. 

Assume the opposite, that Ti is not contained in a MST. 
Let ei be the new edge (i.e., minimum weight edge with exactly one vertex in Ti-1). 
Since we assumed Ti is not part of any MST, adding ei to a MST will yield a cycle. 
That cycle must contain another edge with exactly one vertex in Ti-1 . 
Replacing that edge with ei yields a spanning tree, and since ei had the minimal 

weight of any edge with exactly one vertex in Ti-1, it is a MST. 
Thus, Ti is contained in a MST à CONTRADICTION! 
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Efficiency of Prim's algorithm 

smarter implementation: 
§  use a priority queue (min-heap) to store vertices, along with minimal weight edge 

§  to select each vertex & remove from PQ à |V| * O(log |V|) = O(|V| log |V|) 
§  to update each adjacent vertex after removal (at most once per edge)  

à |E| * O(log |V|) = O(|E| log |V|) 

§  overall efficiency is O( (|E|+|V|) log |V| ) 
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brute force (i.e., adjacency matrix): 
§  simple (conservative) analysis 

for each vertex, must select the least weight edge à O(|V| * |E|) 

§  more careful analysis: 
note that the number of eligible edges is shrinking as the tree grows 

Σ (|V| * deg(vi)) = O(|V|2 + |E|) = O(|V|2) 

Application: shortest path 
consider the general problem of finding the shortest path between two 

nodes in a graph 
§   flight planning and word ladder are examples of this problem 

- in these cases, edges have uniform cost (shortest path = fewest edges) 
§  if we allow non-uniform edges, want to find lowest cost/shortest distance path 

10 example from http://www.algolist.com/Dijkstra's_algorithm 

Redville à Purpleville ? 
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Modified BFS solution 
we could modify the BFS approach to take cost into account 

§  instead of adding each newly expanded path to the end (i.e., queue), add in order of 
path cost (i.e., priority queue) 

[ [Redville]:0 ] 
 
[ [Redville, Blueville]:5,  
  [Redville, Orangeville]:8, 
  [Redville, Greenville]:10 ] 
 
[ [Redville, Orangeville]:8, 
  [Redville, Blueville, Greenville]:8,  
  [Redville, Greenville]:10, 
  [Redville, Blueville, Purpleville]:12 ] 
 
[ [Redville, Blueville, Greenville]:8,  
  [Redville, Greenville]:10, 
  [Redville, Orangeville, Purpleville]:10,  
  [Redville, Blueville, Purpleville]:12 ] 
 
[ [Redville, Greenville]:10, 
  [Redville, Orangeville, Purpleville]:10,  
  [Redville, Blueville, Purpleville]:12 ] 
 
[ [Redville, Orangeville, Purpleville]:10,  
  [Redville, Blueville, Purpleville]:12, 
  [Redville, Greenville, Blueville]:13 ] 
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note: as before, requires lots of 
memory to store all the paths 
 
HOW MANY? 

Dijkstra's algorithm 
alternatively, there is a straightforward greedy algorithm for shortest path 
 
Dijkstra's algorithm 

1.  Begin with the start node. Set its value to 0 and the value of all other nodes to 
infinity. Mark all nodes as unvisited. 

2.  For each unvisited node that is adjacent to the current node: 
a)  If (value of current node + value of edge) < (value of adjacent node), 

change the value of the adjacent node to this value.  
b)  Otherwise leave the value as is. 

3.  Set the current node to visited. 
4.  If unvisited nodes remain, select the one with smallest value and go to step 2. 
5.  If there are no unvisited nodes, then DONE. 

this algorithm is O(N2), requires only O(N) additional storage 
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Dijkstra's algorithm: example 
suppose want to find shortest path from Redville to Purpleville 
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1.  Begin with the start node. Set its value to 0 
and the value of all other nodes to infinity. 
Mark all nodes as unvisited 

2.  For each unvisited node that is adjacent 
to the current node: 
a)  If (value of current node + value of 

edge) < (value of adjacent node), 
change the value of the adjacent 
node to this value.  

b)  Otherwise leave the value as is. 
3.  Set the current node to visited. 

Dijkstra's algorithm: example cont. 
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4.  If unvisited nodes remain, select the one with 
smallest value and go to step 2. 

Blueville: set Greenville to 8 and Purpleville to 12; 
mark as visited. 

Greenville: no unvisited neighbors; mark as visited. 

4.  If unvisited nodes remain, select the one with 
smallest value and go to step 2. 

Orangeville: set Purpleville to 10; mark as visited. 
Purpleville: no unvisited neighbors; mark as visited. 
 
5.  If there are no unvisited nodes, then DONE. 

With all nodes labeled, can easily construct the shortest path – HOW? 
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Correctness & efficiency of Dijkstra's algorithm 

analysis of Dijkstra's algorithm is similar to Prim's algorithm 

§  can show that each greedy selection is safe, leads to shortest path 

§  brute force (i.e., adjacency matrix) approach 
for each vertex, need to select shortest edge à O(|V| * |E|) 
or, more carefully, Σ (|V| * deg(vi)) = O(|V|2 + |E|) = O(|V|2) 
 

§  smarter implementation 
use a priority queue (min-heap) to store vertices, along with minimal weight edge 
 
to select each vertex & remove from PQ à |V| * O(log |V|) = O(|V| log |V|) 
to update each adjacent vertex after removal à |E| * O(log |V|) = O(|E| log |V|) 

overall efficiency is O( (|E|+|V|) log |V| ) 
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Another application: data compression 

in a multimedia world, document sizes continue to increase 
§  a 6 megapixel digital picture is 2-4 MB 
§  an MP3 song is ~3-6 MB 
§  a full-length MPEG movie is ~800 MB 

storing multimedia files can take up a lot of disk space 
§  perhaps more importantly, downloading multimedia requires significant 

bandwidth 

it could be a lot worse! 
§  image/sound/video formats rely heavily on data compression to limit file size 

e.g., if no compression,  6 megapixels * 3 bytes/pixel = ~18 MB 
 

§  the JPEG format provides 10:1 to 20:1 compression without visible loss 
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Audio, video, & text compression 
audio & video compression algorithms rely on domain-specific tricks 

§  lossless image formats (GIF, PNG) recognize repeating patterns (e.g. a sequence of 
white pixels) and store as a group 

§  lossy image formats (JPG, XPM) round pixel values and combine close values 
§  video formats (MPEG, AVI) take advantage of the fact that little changes from one 

frame to next, so store initial frame and changes in subsequent frames 
§  audio formats (MP3, WAV) remove sound out of hearing range, overlapping noises 
 

what about text files? 
§  in the absence of domain-specific knowledge, can't do better than a fixed-width code  

e.g., ASCII code uses 8-bits for each character 
 
'0': 00110000  'A': 01000001  'a': 01100001  
'1': 00110001  'B': 01000010  'b': 01100010 
'2': 00110010  'C': 01000011  'c': 01100011 
 .    .    . 
 .    .    . 
 .    .    . 
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Fixed- vs. variable-width codes 
suppose we had a document that contained only the letters a-f 

§  with a fixed-width code, would need 3 bits for each character 
a  000  d  011 
b  001  e  100   
c  010  f  101 

§  if the document contained 100 characters, 100 * 3 = 300 bits required 

however, suppose we knew the distribution of letters in the document 
a:45,  b:13,  c:12,  d:16,  e:9,  f:5 

§  can customize a variable-width code, optimized for that specific file 
a  0   d  111 
b  101  e  1101   
c  100  f  1100 

§  requires only 45*1 + 13*3 + 12*3 + 16*3 + 9*4 + 5*4 = 224 bits 
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Huffman codes 
Huffman compression is a technique for constructing an optimal*    

variable-length code for text 
*optimal in that it represents a specific file using the fewest bits  

 (among all symbol-for-symbol codes) 

Huffman codes are also known as prefix codes 
§  no individual code is a prefix of any other code 

a  0   d  111 
b  101  e  1101   
c  100  f  1100 

§  this makes decompression unambiguous:   1010111110001001101 
 
§  note: since the code is specific to a particular file, it must be stored along with 

the compressed file in order to allow for eventual decompression 
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Huffman trees 
to construct a Huffman code for a 
specific file, utilize a greedy algorithm 
to construct a Huffman tree: 

1.  process the file and count the frequency 
for each letter in the file 

2.  create a single-node tree for each letter, 
labeled with its frequency 

3.  repeatedly,  
a.  pick the two trees with smallest 

root values 
b.  combine these two trees into a 

single tree whose root is labeled 
with the sum of the two subtree 
frequencies 

4.  when only one tree remains, can extract 
the codes from the Huffman tree by 
following edges from root to each leaf 
(left edge = 0, right edge = 1) 
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Huffman tree construction (cont.) 

the code corresponding to each letter can 
be read by following the edges from the 
root: left edge = 0, right edge = 1 

  
 a: 0  d: 111 
 b: 101  e: 1101 
 c: 100  f: 1100 
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Huffman code compression 

note that at each step, need to pick the two trees with smallest root values 
§  perfect application for a priority queue (min-heap) 

§  store each single-node tree in a priority queue (PQ)   O(N log N) 
§  repeatedly, O(N) times 

remove the two min-value trees from the PQ    O(log N) 
combine into a new tree with sum at root and insert back into PQ  O(log N) 

  ====================== 
  total efficiency = O(N log N) 

while designed for compressing text, it is interesting to note that Huffman 
codes are used in a variety of applications 
§  the last step in the JPEG algorithm, after image-specific techniques are applied, 

is to compress the resulting file using a Huffman code 
§  similarly, Huffman codes are used to compress frames in MPEG (MP4) 
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Greed is good? 

IMPORTANT: the greedy approach is not 
applicable to all problems 

§  but when applicable, it is very effective (no planning 
or coordination necessary) 

 
GREEDY approach for N-Queens: start with first row, 
find a valid position in current row, place a queen in that 
position then move on to the next row 

since queen placements are not independent, local choices do not 
necessarily lead to a global solution  

GREEDY does not work – need a more holistic approach 


