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CSC 421: Algorithm Design & Analysis 
 

Spring 2017 

 
Analyzing problems 

§  backtracking advice  
§  interesting problem: residence matching 
§  lower bounds on problems 

§  decision trees, adversary arguments, problem reduction 

revisiting 3-in-a-row 
3-in-a-row is similar to many grid-based puzzles 

§  Sudoku, KenKen, Nonogrids, Hidoku, Pic-a-Pix, Flow 
 
 
 
 
 
 
 
 
 
 

all are based on filling a grid with values (numbers, colors, …) that meet 
some constraints 2 
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Generic backtracking approach 

while grid is not filled 

find an open cell in the grid 

for each possible value (number, color, …) 

try placing that value in the cell 

if it meets the constraints,  

then try to fill the rest of the grid 

if can't fill the rest, then backtrack 

(i.e., erase the value and continue looping   

 through the remaining values) 
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Interesting problem: residence matching 
each year, the National Residence Matching Program matches 40,000+ 

med school graduates with residency programs 
§  each graduate ranks programs by order of preference 
§  each program ranks students by order of preference 

pairing graduates & programs in a way that makes everyone (reasonably) 
happy is an extremely complex task 
§  want to ensure that the pairings are stable, i.e., no grad and program would 

prefer each other over their assigned matches  
e.g., suppose G1 listed P1 > P2; and P1 listed G1 > G2 

 the match {G1 à P2,G2 à P1} is unstable, since both G1 and P1 would 
prefer G1 à P1 

 
since 1952, the NRMP has utilized an algorithm for processing all 

residency requests and assigning stable matches to graduates 
(this general problem is known as the stable matching or stable marriage problem) 
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Stable matching example 
can specify preferences either by two tables of rankings 
 

 grad's preferences  program's preferences  
             1st  2nd  3rd   1st  2nd 3rd 
           G1: P2  P1  P3  P1:  G2  G3  G1 
            G2: P2  P3  P1  P2: G3  G1  G2 
            G3: P3  P2  P1                 P3: G2  G3  G1 
 
or via a combined rankings matrix 
 

 ranking matrix 
  P1  P2  P3 
 G1  2\3  1\2  3\3 
 G2  3\1  1\3  2\1 
 G3  3\2  2\1  1\2 

 

G1àP1, G2àP2, G3àP3 is unstable 
•   G1 would prefer P2 over P1 
•   P2 would prefer G1 over G2 
 

G1àP1, G2àP3, G3àP2 is stable 
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Stable match algorithm (Gale-Shapley) 

1.  start with all the grads and programs being unassigned 
2.  while there are unassigned grads, select an unassigned grad (Su): 

a.  have Su chooses the next program on Su's preference list (Pn) 
b.  if Pn is unassigned, it (tentatively) accepts Su 
c.  otherwise, it compares Su with its current match (Sm) 

i.  if Pn prefers Su to Sm, it switches its assignment to Su (releasing Sm) 
 

 ranking matrix   initially, {G1, G2, G3} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   suppose we select G1 
 G2  3\1  1\3  2\1   G1 chooses P2 
 G3  3\2  2\1  1\2   P2 is unassigned, so it accepts G1 

      now, {G1 à P2} & {G2, G3} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   suppose we select G2 
 G2  3\1  1\3  2\1   G2 chooses P2 
 G3  3\2  2\1  1\2   P2 is assigned G1 and prefers G1, so no change 
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Stable match algorithm (Gale-Shapley) 
 ranking matrix   still, {G1 à P2} & {G2, G3} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   suppose we select G2 again 
 G2  3\1  1\3  2\1   G2 now chooses P3 
 G3  3\2  2\1  1\2   P3 is unassigned, so it accepts G2 

      now, {G1 à P2, G2 à P3} & {G3} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   we select G3 
 G2  3\1  1\3  2\1   G3 chooses P3 
 G3  3\2  2\1  1\2   P3 is assigned G2 and prefers G2, so no change 

      still, {G1 à P2, G2 à P3} & {G3} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   we select G3 
 G2  3\1  1\3  2\1   G3 now chooses P2 
 G3  3\2  2\1  1\2   P2 is assigned G1 but prefers G3, so switches 
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Stable match algorithm (Gale-Shapley) 

      now, {G2 à P3, G3 à P2} & {G1} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   we select G1 
 G2  3\1  1\3  2\1   G1 chooses P2 
 G3  3\2  2\1  1\2   P2 is assigned G3 and prefers G3, so no change 

      still, {G2 à P3, G3 à P2} & {G1} unassigned  
  P1  P2  P3     
 G1  2\3  1\2  3\3   we select G1 
 G2  3\1  1\3  2\1   G1 now chooses P1 
 G3  3\2  2\1  1\2   P1 is unassigned, so it accepts G1 

      now, {G1 à P1, G2 à P3, G3 à P2}  
  P1  P2  P3     
 G1  2\3  1\2  3\3   this is a stable match 
 G2  3\1  1\3  2\1    
 G3  3\2  2\1  1\2    
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Analysis of the Gale-Shapley Algorithm 

the algorithm produces a stable matching in no more than N2 iterations 
 
the stable matching produced is always graduate-optimal, meaning each 
grad gets the highest rank program on his/her list under any stable marriage 

§  the graduate-optimal matching is unique for a given set of grad/program preferences 
§  originally, the NRMP used a variant of this algorithm with the roles reversed, 

producing a program-optimal matching 

the NRMP algorithm now allows for couples to apply together 
§  this more complex problem turns out to be nP-complete (LATER) 
§  as a result, the algorithm may produce a partial matching, with unassigned grads 

going into a secondary Scramble pool  
 

Lloyd Shapley was awarded the 2012 Nobel Prize in Economics for his 
work and analysis of matching algorithms 

Analyzing problems 
for most of this class, we have focused on devising algorithms for a given 

problem, then analyzing those algorithms 
 

selection sort a list of numbers à O(N2)   
 

find shortest path between v1 & v2 in a graph (Dijkstra's) à O(V2) 
 

does that mean sorting & path finding are equally hard problems? 
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we know of a more efficient algorithm for sorting 
 
merge sort à O(N log N) 
 

does that mean it is an easier problem? 
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Proving lower bounds 
to characterize the difficulty of a problem (not a specific algorithm), must be 

able to show a lower bound on possible algorithms 
§  can be shown that comparison-based sorting requires Ω(N log N) steps 
§  similarly, shortest path for an undirected graph requires Ω(E + V log V) steps 

 
establishing a lower bound for a problem can tell us 

§  when a particular algorithm is as good as possible 
§  when the problem is intractable (by showing that best possible algorithm is BAD) 

 
methods for establishing lower bounds: 

§  brute force 
§  information-theoretic arguments (decision trees) 
§  adversary arguments 
§  problem reduction 

Brute force arguments 
sometimes, a problem-specific approach works 
 
example: polynomial evaluation   p(N) = aNxN + aN-1xN-1 + … + a0 

 
§  evaluating this polynomial requires Ω(N) steps, since each coefficient must be 

processed 
 
 
 
example: Towers of Hanoi puzzle 
 

§  can prove, by induction, that moving a tower of size N requires Ω(2N) steps 
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Information-theoretic arguments 

can sometimes establish a lower bound based on the amount of information 
the solution must produce 

 
example: guess a randomly selected number between 1 and N 

§  with possible responses of "correct", "too low", or "too high" 

§  the amount of uncertainty is ⎡log2 N⎤, the number of bits needed to specify the 
selected largest number 

e.g., N = 127 à 7 bits 
  

§  each answer to a question yields at most 1 bit of information 
if guess of 64 yields “too high,” then 1st bit must be a 0 à 0xxxxxx 
if next guess of 32 yields “too low,”, then 2nd bit must be 1 à 01xxxxx 
if next guess of 48 yields “too low,” then 3rd bit must be 1 à 011xxxx 
. . . 
 

§  thus, ⎡log2 N⎤ is a lower bound on the number of questions 
13 

Decision trees 
a useful structure for information-theoretic arguments is a decision tree 
 

example: guessing a number between 1 and 15  
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§  min # of nodes in the decision tree?  
§  min height of binary tree with that many nodes? 

note that this problem is Ω(minimal decision tree height) 

 

8? 

4? 12? 

2? 6? 

high?  
0xxx 

low? 
1xxx 

high? 
00xx 

low? 
01xx 

high? 
10xx 

low? 
11xx 

0001 0011 

0010 

1000 

0100 1100 

0110 
10? 14? 

high? 

1? 3? 
0101 0111 

high? 

5? 
low? 

7? 
low? 

1001 1011 

1010 1110 high? 

9? 11? 
1101 1111 

high? 

13? 
low? 

15? 
low? 
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Decision trees 
in general, a decision tree is a model of algorithms involving comparisons 

§  internal nodes represent comparisons 
§  leaves represent outcomes  

 
e.g., decision tree for 3-element (comparison-based) sort: 
 

a < b

b <  c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb
yes

a < c < b c < b < a

no
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Decision trees & sorting 

note that any comparison-based sorting algorithm can be represented by a 
decision tree 
§  number of leaves (outcomes) ≥  N! 

 
§  height of binary tree with N! leaves  ≥  ⎡log2 N!⎤ 

§  therefore, the minimum number of comparisons required by any comparison-based 
sorting algorithm ≥  ⎡log2 N!⎤ 
 

§  since ⎡log2 N!⎤ ≈ N log2 N (proof not shown), Ω(N log N) steps are required 

thus, merge/quick/heap sorts are as good as it gets 

a < b

b <  c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb
yes

a < c < b c < b < a

no
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Decision trees & searching 

similarly, we can use a decision tree to show that binary search is as good as 
it gets (assuming the list is sorted) 
 

decision tree for binary search  
of 4-element list: 

§  internal nodes are found elements 
§  leaves are ranges if not found 

 
 

§  number of leaves (ranges where not found) = N + 1 
 

§  height of binary tree with N+1 leaves  ≥  ⎡log2 (N+1)⎤ 

§  therefore, the minimum number of comparisons required by any comparison-based 
searching algorithm ≥  ⎡log2 (N+1)⎤ 
 

§  Ω(log N) steps are required 
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Adversary arguments 
using an adversary argument, you repeatedly adjust the input to make an 

algorithm work the hardest 

example: dishonest hangman 
§  adversary always puts the word in a larger of the subset generated by last guess 
§  for a given dictionary, can determine a lower bound on guesses 

 

example:  merging two sorted lists of size N (as in merge sort) 
§  adversary makes it so that no list "runs out" of values (e.g., ai < bj  iff  i < j) 
§  forces 2N-1 comparisons to produce  b1 < a1 < b2 < a2 < … < bN < aN 
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Problem reduction 
problem reduction uses a transform & conquer approach 

§  if we can show that problem P is at least as hard as problem Q, then a lower bound for 
Q is also a lower bound for P.            

i.e., hard(P) ≥ hard(Q) è if Q is Ω(X), so is P 
 

in general, to prove lower bound for P: 
1.  find problem Q with a known lower bound  
2.  reduce that problem to problem P  

 i.e., show that can solve Q by solving an instance of P 
3.  then P is at least as hard as Q, so same lower bound applies 

 

example: prove that multiplication (of N-bit numbers) is Ω(N) 
1.  squaring an N-bit number is known to be Ω(N) 
2.  can reduce squaring to multiplication:  x2 = x * x 
3.  then multiplication is at least as hard as squaring, so also Ω(N) 

REASONING: if multiplication could be solved in O(X) where X < N, 
then could do x2 by doing x*x à O(X) < O(N)  CONTRADICTION OF SQUARE'S Ω(N) 
 
 

 
 
 
 

 
 
 

Problem reduction example 
CLOSEST NUMBERS (CN) PROBLEM: given N numbers, find the two 

closest numbers 
1. consider the ELEMENT UNIQUENESS (EU) problem 

§  given a list of N numbers, determine if all are unique (no dupes) 
§  this problem has been shown to have a lower bound of Ω(N log N) 

2. can reduce EU to CN 
consider an instance of EU: given numbers e1, …, eN, determine if all are unique 
§  find the two closest numbers (this is an instance of CN) 
§  if the distance between them is > 0, then e1, …, eN are unique 

3.  this shows that CN is at least as hard as EU 
§  can solve an instance of EU by performing a transformation & solving CN 
§  since transformation is O(N), CN must also have a lower-bound of Ω(N log N) 

 REASONING: if CN could be solved in O(X) where X < N log N, 
then could solve EU by transforming & solving CN à O(N) +O(X) < O(N log N) 
CONTRADICTION OF EU's  Ω(N log N) 
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Another example 
CLOSEST POINTS (CP) PROBLEM: given N points in the plane, find the 

two closest points 
1. consider the CLOSEST NUMBER (CN) problem 

§  we just showed that CN has a lower bound of Ω(N log N) 

2. can reduce CN to CP 
consider an instance of CN: given numbers e1, …, eN, determine closest numbers 
§  from these N numbers, construct N points: (e1, 0), …, (eN, 0)  
§  find the two closest points (this is an instance of CP) 
§  if (ei, 0) and (ej, 0) are closest points, then ei and ej are closest numbers 

3.  this shows that CP is at least as hard as CN 
§  can solve an instance of CN by performing a transformation & solving CP 
§  since transformation is O(N), CP must also have a lower-bound of Ω(N log N) 
 REASONING: if CP could be solved in O(X) where X < N log N,  
then could solve CN by transforming & solving CP à O(N) +O(X) < O(N log N) 
CONTRADICTION OF CN's  Ω(N log N) 
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Tightness 

note: if an algorithm is Ω(N log N), then it is also Ω(N)  
 
are the Ω(N log N) lower bounds tight for CLOSEST NUMBERS and 

CLOSEST POINTS problems? 
 

§  can you devise O(N log N) algorithm for CLOSEST NUMBERS? 

§  can you devise O(N log N) algorithm for CLOSEST POINTS? 
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