
1

1

CSC 421: Algorithm Design & Analysis

Spring 2017

Analyzing problems

§  backtracking advice
§  interesting problem: residence matching
§  lower bounds on problems

§  decision trees, adversary arguments, problem reduction

revisiting 3-in-a-row
3-in-a-row is similar to many grid-based puzzles

§  Sudoku, KenKen, Nonogrids, Hidoku, Pic-a-Pix, Flow

all are based on filling a grid with values (numbers, colors, …) that meet
some constraints 2

2

Generic backtracking approach

while grid is not filled

find an open cell in the grid

for each possible value (number, color, …)

try placing that value in the cell

if it meets the constraints,

then try to fill the rest of the grid

if can't fill the rest, then backtrack

(i.e., erase the value and continue looping

 through the remaining values)

3

Interesting problem: residence matching
each year, the National Residence Matching Program matches 40,000+

med school graduates with residency programs
§  each graduate ranks programs by order of preference
§  each program ranks students by order of preference

pairing graduates & programs in a way that makes everyone (reasonably)
happy is an extremely complex task
§  want to ensure that the pairings are stable, i.e., no grad and program would

prefer each other over their assigned matches
e.g., suppose G1 listed P1 > P2; and P1 listed G1 > G2

 the match {G1 à P2,G2 à P1} is unstable, since both G1 and P1 would
prefer G1 à P1

since 1952, the NRMP has utilized an algorithm for processing all

residency requests and assigning stable matches to graduates
(this general problem is known as the stable matching or stable marriage problem)

4

3

5

Stable matching example
can specify preferences either by two tables of rankings

 grad's preferences program's preferences
 1st 2nd 3rd 1st 2nd 3rd
 G1: P2 P1 P3 P1: G2 G3 G1
 G2: P2 P3 P1 P2: G3 G1 G2
 G3: P3 P2 P1 P3: G2 G3 G1

or via a combined rankings matrix

 ranking matrix
 P1 P2 P3
 G1 2\3 1\2 3\3
 G2 3\1 1\3 2\1
 G3 3\2 2\1 1\2

G1àP1, G2àP2, G3àP3 is unstable
•  G1 would prefer P2 over P1
•  P2 would prefer G1 over G2

G1àP1, G2àP3, G3àP2 is stable

6

Stable match algorithm (Gale-Shapley)

1.  start with all the grads and programs being unassigned
2.  while there are unassigned grads, select an unassigned grad (Su):

a.  have Su chooses the next program on Su's preference list (Pn)
b.  if Pn is unassigned, it (tentatively) accepts Su
c.  otherwise, it compares Su with its current match (Sm)

i.  if Pn prefers Su to Sm, it switches its assignment to Su (releasing Sm)

 ranking matrix initially, {G1, G2, G3} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 suppose we select G1
 G2 3\1 1\3 2\1 G1 chooses P2
 G3 3\2 2\1 1\2 P2 is unassigned, so it accepts G1

 now, {G1 à P2} & {G2, G3} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 suppose we select G2
 G2 3\1 1\3 2\1 G2 chooses P2
 G3 3\2 2\1 1\2 P2 is assigned G1 and prefers G1, so no change

4

7

Stable match algorithm (Gale-Shapley)
 ranking matrix still, {G1 à P2} & {G2, G3} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 suppose we select G2 again
 G2 3\1 1\3 2\1 G2 now chooses P3
 G3 3\2 2\1 1\2 P3 is unassigned, so it accepts G2

 now, {G1 à P2, G2 à P3} & {G3} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 we select G3
 G2 3\1 1\3 2\1 G3 chooses P3
 G3 3\2 2\1 1\2 P3 is assigned G2 and prefers G2, so no change

 still, {G1 à P2, G2 à P3} & {G3} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 we select G3
 G2 3\1 1\3 2\1 G3 now chooses P2
 G3 3\2 2\1 1\2 P2 is assigned G1 but prefers G3, so switches

8

Stable match algorithm (Gale-Shapley)

 now, {G2 à P3, G3 à P2} & {G1} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 we select G1
 G2 3\1 1\3 2\1 G1 chooses P2
 G3 3\2 2\1 1\2 P2 is assigned G3 and prefers G3, so no change

 still, {G2 à P3, G3 à P2} & {G1} unassigned
 P1 P2 P3
 G1 2\3 1\2 3\3 we select G1
 G2 3\1 1\3 2\1 G1 now chooses P1
 G3 3\2 2\1 1\2 P1 is unassigned, so it accepts G1

 now, {G1 à P1, G2 à P3, G3 à P2}
 P1 P2 P3
 G1 2\3 1\2 3\3 this is a stable match
 G2 3\1 1\3 2\1
 G3 3\2 2\1 1\2

5

9

Analysis of the Gale-Shapley Algorithm

the algorithm produces a stable matching in no more than N2 iterations

the stable matching produced is always graduate-optimal, meaning each
grad gets the highest rank program on his/her list under any stable marriage

§  the graduate-optimal matching is unique for a given set of grad/program preferences
§  originally, the NRMP used a variant of this algorithm with the roles reversed,

producing a program-optimal matching

the NRMP algorithm now allows for couples to apply together
§  this more complex problem turns out to be nP-complete (LATER)
§  as a result, the algorithm may produce a partial matching, with unassigned grads

going into a secondary Scramble pool

Lloyd Shapley was awarded the 2012 Nobel Prize in Economics for his
work and analysis of matching algorithms

Analyzing problems
for most of this class, we have focused on devising algorithms for a given

problem, then analyzing those algorithms

selection sort a list of numbers à O(N2)

find shortest path between v1 & v2 in a graph (Dijkstra's) à O(V2)

does that mean sorting & path finding are equally hard problems?

10

we know of a more efficient algorithm for sorting

merge sort à O(N log N)

does that mean it is an easier problem?

6

11

Proving lower bounds
to characterize the difficulty of a problem (not a specific algorithm), must be

able to show a lower bound on possible algorithms
§  can be shown that comparison-based sorting requires Ω(N log N) steps
§  similarly, shortest path for an undirected graph requires Ω(E + V log V) steps

establishing a lower bound for a problem can tell us

§  when a particular algorithm is as good as possible
§  when the problem is intractable (by showing that best possible algorithm is BAD)

methods for establishing lower bounds:

§  brute force
§  information-theoretic arguments (decision trees)
§  adversary arguments
§  problem reduction

Brute force arguments
sometimes, a problem-specific approach works

example: polynomial evaluation p(N) = aNxN + aN-1xN-1 + … + a0

§  evaluating this polynomial requires Ω(N) steps, since each coefficient must be

processed

example: Towers of Hanoi puzzle

§  can prove, by induction, that moving a tower of size N requires Ω(2N) steps

12

7

Information-theoretic arguments

can sometimes establish a lower bound based on the amount of information
the solution must produce

example: guess a randomly selected number between 1 and N

§  with possible responses of "correct", "too low", or "too high"

§  the amount of uncertainty is ⎡log2 N⎤, the number of bits needed to specify the
selected largest number

e.g., N = 127 à 7 bits

§  each answer to a question yields at most 1 bit of information
if guess of 64 yields “too high,” then 1st bit must be a 0 à 0xxxxxx
if next guess of 32 yields “too low,”, then 2nd bit must be 1 à 01xxxxx
if next guess of 48 yields “too low,” then 3rd bit must be 1 à 011xxxx
. . .

§  thus, ⎡log2 N⎤ is a lower bound on the number of questions
13

Decision trees
a useful structure for information-theoretic arguments is a decision tree

example: guessing a number between 1 and 15

14

§  min # of nodes in the decision tree?
§  min height of binary tree with that many nodes?

note that this problem is Ω(minimal decision tree height)

8?

4? 12?

2? 6?

high?
0xxx

low?
1xxx

high?
00xx

low?
01xx

high?
10xx

low?
11xx

0001 0011

0010

1000

0100 1100

0110
10? 14?

high?

1? 3?
0101 0111

high?

5?
low?

7?
low?

1001 1011

1010 1110 high?

9? 11?
1101 1111

high?

13?
low?

15?
low?

8

15

Decision trees
in general, a decision tree is a model of algorithms involving comparisons

§  internal nodes represent comparisons
§  leaves represent outcomes

e.g., decision tree for 3-element (comparison-based) sort:

a < b

b < c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb
yes

a < c < b c < b < a

no

16

Decision trees & sorting

note that any comparison-based sorting algorithm can be represented by a
decision tree
§  number of leaves (outcomes) ≥ N!

§  height of binary tree with N! leaves ≥ ⎡log2 N!⎤

§  therefore, the minimum number of comparisons required by any comparison-based
sorting algorithm ≥ ⎡log2 N!⎤

§  since ⎡log2 N!⎤ ≈ N log2 N (proof not shown), Ω(N log N) steps are required

thus, merge/quick/heap sorts are as good as it gets

a < b

b < c a < c
yes

yes no

noyesno

a < c b < c

a < b < c

c < a < b

b < a < c

b < c < a

no yes

abc

abc bac

bcaacb
yes

a < c < b c < b < a

no

9

17

Decision trees & searching

similarly, we can use a decision tree to show that binary search is as good as
it gets (assuming the list is sorted)

decision tree for binary search
of 4-element list:

§  internal nodes are found elements
§  leaves are ranges if not found

§  number of leaves (ranges where not found) = N + 1

§  height of binary tree with N+1 leaves ≥ ⎡log2 (N+1)⎤

§  therefore, the minimum number of comparisons required by any comparison-based
searching algorithm ≥ ⎡log2 (N+1)⎤

§  Ω(log N) steps are required

18

Adversary arguments
using an adversary argument, you repeatedly adjust the input to make an

algorithm work the hardest

example: dishonest hangman
§  adversary always puts the word in a larger of the subset generated by last guess
§  for a given dictionary, can determine a lower bound on guesses

example: merging two sorted lists of size N (as in merge sort)
§  adversary makes it so that no list "runs out" of values (e.g., ai < bj iff i < j)
§  forces 2N-1 comparisons to produce b1 < a1 < b2 < a2 < … < bN < aN

10

19

Problem reduction
problem reduction uses a transform & conquer approach

§  if we can show that problem P is at least as hard as problem Q, then a lower bound for
Q is also a lower bound for P.

i.e., hard(P) ≥ hard(Q) è if Q is Ω(X), so is P

in general, to prove lower bound for P:
1.  find problem Q with a known lower bound
2.  reduce that problem to problem P

 i.e., show that can solve Q by solving an instance of P
3.  then P is at least as hard as Q, so same lower bound applies

example: prove that multiplication (of N-bit numbers) is Ω(N)
1.  squaring an N-bit number is known to be Ω(N)
2.  can reduce squaring to multiplication: x2 = x * x
3.  then multiplication is at least as hard as squaring, so also Ω(N)

REASONING: if multiplication could be solved in O(X) where X < N,
then could do x2 by doing x*x à O(X) < O(N) CONTRADICTION OF SQUARE'S Ω(N)

Problem reduction example
CLOSEST NUMBERS (CN) PROBLEM: given N numbers, find the two

closest numbers
1. consider the ELEMENT UNIQUENESS (EU) problem

§  given a list of N numbers, determine if all are unique (no dupes)
§  this problem has been shown to have a lower bound of Ω(N log N)

2. can reduce EU to CN
consider an instance of EU: given numbers e1, …, eN, determine if all are unique
§  find the two closest numbers (this is an instance of CN)
§  if the distance between them is > 0, then e1, …, eN are unique

3.  this shows that CN is at least as hard as EU
§  can solve an instance of EU by performing a transformation & solving CN
§  since transformation is O(N), CN must also have a lower-bound of Ω(N log N)

 REASONING: if CN could be solved in O(X) where X < N log N,
then could solve EU by transforming & solving CN à O(N) +O(X) < O(N log N)
CONTRADICTION OF EU's Ω(N log N)

20

11

Another example
CLOSEST POINTS (CP) PROBLEM: given N points in the plane, find the

two closest points
1. consider the CLOSEST NUMBER (CN) problem

§  we just showed that CN has a lower bound of Ω(N log N)

2. can reduce CN to CP
consider an instance of CN: given numbers e1, …, eN, determine closest numbers
§  from these N numbers, construct N points: (e1, 0), …, (eN, 0)
§  find the two closest points (this is an instance of CP)
§  if (ei, 0) and (ej, 0) are closest points, then ei and ej are closest numbers

3.  this shows that CP is at least as hard as CN
§  can solve an instance of CN by performing a transformation & solving CP
§  since transformation is O(N), CP must also have a lower-bound of Ω(N log N)
 REASONING: if CP could be solved in O(X) where X < N log N,
then could solve CN by transforming & solving CP à O(N) +O(X) < O(N log N)
CONTRADICTION OF CN's Ω(N log N)

 21

Tightness

note: if an algorithm is Ω(N log N), then it is also Ω(N)

are the Ω(N log N) lower bounds tight for CLOSEST NUMBERS and

CLOSEST POINTS problems?

§  can you devise O(N log N) algorithm for CLOSEST NUMBERS?

§  can you devise O(N log N) algorithm for CLOSEST POINTS?

22

