Algorithm analysis, searching and sorting

- best vs. average vs. worst case analysis
- big-Oh analysis (intuitively)
- analyzing searches & sorts
- general rules for analyzing algorithms
- recurrence relations
- big-Oh analysis (formally)
- specialized sorts

Algorithm efficiency

when we want to classify the efficiency of an algorithm, we must first identify the costs to be measured

- memory used? sometimes relevant, but not usually driving force
- execution time? dependent on various factors, including computer specs
- # of steps somewhat generic definition, but most useful

to classify an algorithm's efficiency, first identify the steps that are to be measured

 e.g., for searching: # of inspections, …
 for sorting: # of inspections, # of swaps, # of inspections + swaps, …

must focus on key steps (that capture the behavior of the algorithm)

 e.g., for searching: there is overhead, but the work done by the algorithm is dominated by the number of inspections
Best vs. average vs. worst case

when measuring efficiency, you need to decide what case you care about
 - best case: usually not of much practical use
 the best case scenario may be rare, certainly not guaranteed
 - average case: can be useful to know
 on average, how would you expect the algorithm to perform
 can be difficult to analyze – must consider all possible inputs and calculate the
 average performance across all inputs
 - worst case: most commonly used measure of performance
 provides upper-bound on performance, guaranteed to do no worse

sequential search: best? average? worst?
binary search: best? average? worst?

Big-Oh (intuitively)

 intuitively: an algorithm is \(O\left(f(N)\right) \) if the \# of steps involved in solving a
 problem of size \(N \) has \(f(N) \) as the dominant term

\[
\begin{align*}
O(N): & \quad 5N & \quad 3N + 2 & \quad N/2 - 20 \\
O(N^2): & \quad N^2 & \quad N^2 + 100 & \quad 10N^2 - 5N + 100 \\
& \; \quad \cdots
\end{align*}
\]

why aren't the smaller terms important?
 - big-Oh is a "long-term" measure
 - when \(N \) is sufficiently large, the largest term dominates

consider \(f_1(N) = 300* N \) (a very steep line) & \(f_2(N) = \frac{1}{2} N^2 \) (a very gradual quadratic)

in the short run (i.e., for small values of \(N \)), \(f_1(N) > f_2(N) \)
 e.g., \(f_1(10) = 300*10 = 3,000 > 50 = \frac{1}{2}*10^2 = f_2(10) \)
in the long run (i.e., for large values of \(N \)), \(f_1(N) < f_2(N) \)
 e.g., \(f_1(1,000) = 300*1,000 = 300,000 < 500,000 = \frac{1}{2}*1,000^2 = f_2(1,000) \)
Big-Oh and rate-of-growth

big-Oh classifications capture rate of growth

- for an $O(N)$ algorithm, doubling the problem size doubles the amount of work
 e.g., suppose $Cost(N) = 5N - 3$
 - $Cost(S) = 5S - 3$
 - $Cost(2S) = 5(2S) - 3 = 10S - 3$

- for an $O(N \log N)$ algorithm, doubling the problem size more than doubles the amount of work
 e.g., suppose $Cost(N) = 5N \log N + N$
 - $Cost(S) = 5S \log S + S$
 - $Cost(2S) = 5(2S) \log (2S) + 2S = 10S(\log(S)+1) + 2S = 10S \log S + 12S$

- for an $O(N^2)$ algorithm, doubling the problem size quadruples the amount of work
 e.g., suppose $Cost(N) = 5N^2 - 3N + 10$
 - $Cost(S) = 5S^2 - 3S + 10$
 - $Cost(2S) = 5(2S)^2 - 3(2S) + 10 = 20S^2 - 6S + 10 = 20S^2 - 6S + 10$

Big-Oh of searching/sorting

sequential search: worst case cost of finding an item in a list of size N
- may have to inspect every item in the list

$Cost(N) = N$ inspections + overhead
$\Rightarrow O(N)$

selection sort: cost of sorting a list of N items
- make $N-1$ passes through the list, comparing all elements and performing one swap

$Cost(N) = (1 + 2 + 3 + \ldots + N-1)$ comparisons + $N-1$ swaps + overhead
$= N(N-1)/2$ comparisons + $N-1$ swaps + overhead
$= \frac{1}{2}N^2 - \frac{1}{2}N$ comparisons + $N-1$ swaps + overhead
$\Rightarrow O(N^2)$
General rules for analyzing algorithms

1. **for loops**: the running time of a for loop is at most
 \[\text{running time of statements in loop} \times \text{number of loop iterations} \]

   ```java
   for (int i = 0; i < N; i++) {
       sum += nums[i];
   }
   ```

2. **nested loops**: the running time of a statement in nested loops is
 \[\text{running time of statement in loop} \times \text{product of sizes of the loops} \]

   ```java
   for (int i = 0; i < N; i++) {
       for (int j = 0; j < M; j++) {
           nums1[i] += nums2[j] + i;
       }
   }
   ```

3. **consecutive statements**: the running time of consecutive statements is
 \[\text{sum of their individual running times} \]

   ```java
   int sum = 0;
   for (int i = 0; i < N; i++) {
       sum += nums[i];
   }
   double avg = (double)sum/N;
   ```

4. **if-else**: the running time of an if-else statement is at most
 \[\text{running time of the test} + \text{maximum running time of the if and else cases} \]

   ```java
   if (isSorted(nums)) {
       index = binarySearch(nums, desired);
   } else {
       index = sequentialSearch(nums, desired);
   }
   ```
EXAMPLE: finding all anagrams of a word (approach 1)

for each possible permutation of the word
• generate the next permutation
• test to see if contained in the dictionary
• if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

for each possible permutation of the word
• generate the next permutation
 $\Rightarrow O(L)$, assuming a smart encoding
• test to see if contained in the dictionary
 $\Rightarrow O(D)$, assuming sequential search
• if so, add to the list of anagrams
 $\Rightarrow O(1)$

$\Rightarrow O(L! \times (L + D + 1)) \Rightarrow O(L! \times D)$

note:
$6! = 720$
$7! = 5,040$
$8! = 40,320$
$9! = 362,880$
$10! = 3,628,800$
$11! = 39,916,800$

since L! different permutations, will loop L! times

EXAMPLE: finding all anagrams of a word (approach 2)

sort letters of given word
traverse the entire dictionary, word by word
• sort the next dictionary word
• test to see if identical to sorted given word
• if so, add to the list of anagrams

efficiency of this approach, where L is word length & D is dictionary size?

sort letters of given word
 $\Rightarrow O(L \log L)$, assuming an efficient sort
traverse the entire dictionary, word by word
• sort the next dictionary word
 $\Rightarrow O(L \log L)$, assuming an efficient sort
• test to see if identical to sorted given word
 $\Rightarrow O(L)$
• if so, add to the list of anagrams
 $\Rightarrow O(1)$

$\Rightarrow O(L \log L + (D \times (L \log L + L + 1))) \Rightarrow O(L \log L \times D)$

since dictionary is size D, will loop D times
Approach 1 vs. approach 2

Clearly, approach 2 will be faster $O(L \log L \times D)$ vs. $O(L! \times D)$

- For a 5-letter word:

 \[
 5 \log 5 \times 117,000 \approx 12 \times 117,000 = 1,404,000 \\
 5! \times 117,000 = 120 \times 117,000 = 14,040,000
 \]

- For a 10-letter word:

 \[
 10 \log 10 \times 117,000 \approx 33 \times 117,000 = 3,861,000 \\
 10! \times 117,000 = 3,628,800 \times 117,000 = 424,569,600,000
 \]

Would it make a difference if the dictionary were sorted?

- Could use binary search to check for a word in approach 1 $\Rightarrow O(L! \times \log D)$

 - 5-letter word: $5! \times \log 117,000 = 120 \times 17 = 2,040$
 - 10-letter word: $10! \times \log 117,000 = 3,628,800 \times 17 = 61,689,600$

Analyzing recursive algorithms

Recursive algorithms can be analyzed by defining a recurrence relation:

Cost of searching N items using binary search =

\[
\text{cost of comparing middle element} + \text{cost of searching correct half (N/2 items)}
\]

More succinctly: $\text{Cost}(N) = \text{Cost}(N/2) + C$

\[
\begin{align*}
\text{Cost}(N) &= \text{Cost}(N/2) + C \\
&= (\text{Cost}(N/4) + C) + C \\
&= \text{Cost}(N/4) + 2C \\
&= (\text{Cost}(N/8) + C) + 2C \\
&= \text{Cost}(N/8) + 3C \\
&= \ldots \\
&= \text{Cost}(1) + (\log_2 N) \times C \\
&= C \log_2 N + C' \\
&\Rightarrow O(\log N)
\end{align*}
\]
Analyzing merge sort

cost of sorting N items using merge sort =
 cost of sorting left half (N/2 items) + cost of sorting right half (N/2 items) +
 cost of copying into output array (N items)

more succinctly: Cost(N) = 2Cost(N/2) + C1*N + C2

\[
\begin{align*}
\text{Cost}(N) &= 2\text{Cost}(N/2) + C1*N + C2 \\
&= 2(2\text{Cost}(N/4) + C1N/2 + C2) + C1N + C2 \\
&= 4\text{Cost}(N/4) + 2C1N + 3C2 \\
&= 4(2\text{Cost}(N/8) + C1N/4 + C2) + 2C1N + 3C2 \\
&= 8\text{Cost}(N/8) + 3C1N + 7C2 \\
&= \ldots \\
&= N\text{Cost}(1) + (\log_2 N)C1N + (N-1) C2 \\
&= C1N \log_2 N + (C' + C2)N - C2 \\
\Rightarrow \text{O}(N \log N)
\end{align*}
\]

Big-Oh (slightly more formally)

more formally: an algorithm is \(O(f(N)) \) if, after some point, the \# of steps can be bounded from above by a scaled \(f(N) \) function

\(O(N) \): if number of steps can eventually be bounded by a line
\(O(N^2) \): if number of steps can eventually be bounded by a quadratic

"after some point" captures the fact that we only care about the long run
- for small values of \(N \), the constants can make an \(O(N) \) algorithm do more work than an \(O(N^2) \) algorithm
- but beyond some threshold size, the \(O(N^2) \) will always do more work

\(e.g., f_1(N) = 300N \) \& \(f_2(N) = \frac{1}{2} N^2 \) \what threshold forces \(f_1(N) \leq f_2(N) ? \)
Big-Oh (formally)

An algorithm is $O(f(N))$ if there exists a positive constant C and non-negative integer T such that for all $N \geq T$, the number of steps required is $\leq C \cdot f(N)$.

For example, selection sort:

$N(N-1)/2$ inspections + $N-1$ swaps + overhead = $(N^2/2 + N/2 - 1 + X)$ steps

If we consider $C = 2$ and $T = \text{max}(X, 1)$, then

$N^2/2 + N/2 - 1 + X \leq N^2/2 + N/2 + X$

$\leq N^2/2 + N^2/2 + X$

$\leq N^2/2 + N^2/2 + N^2$

$= 2N^2$

$\Rightarrow O(N^2)$

Exercises

Consider an algorithm whose cost function is

$\text{Cost}(N) = 12N^3 - 5N^2 + N - 300$

Intuitively, we know this is $O(N^3)$

Formally, what are values of C and T that meet the definition?

- An algorithm is $O(N^3)$ if there exists a positive constant C and non-negative integer T such that for all $N \geq T$, the number of steps required is $\leq C \cdot N^3$

Consider "merge3-sort"

1. If the range to be sorted is size 0 or 1, then DONE.
2. Otherwise, calculate the indices 1/3 and 2/3 of the way through the list.
3. Recursively sort each third of the list.
4. Merge the three sorted sublists together.

What is the recurrence relation that defines the cost of this algorithm?

What is its big-Oh classification?
Specialized sorts

for general-purpose, comparable data, $O(N \log N)$ is optimal

- for special cases, you can actually do better

e.g., suppose there is a fixed, reasonably-sized range of values

- such as years in the range 1900-2006

- construct a frequency array with $|\text{range}|$ counters, initialized to 0

- then traverse and copy the appropriate values back to the list

big-Oh analysis?

Radix sort

suppose the values can be compared lexicographically (either character-by-character or digit-by-digit)

radix sort:

1. take the least significant char/digit of each value
2. sort the list based on that char/digit, but keep the order of values with the same char/digit
3. repeat the sort with each more significant char/digit

most often implemented using a "bucket list"

- here, need one bucket for each possible letter
- copy all of the words ending in "a" in the 1st bucket, "b" in the 2nd bucket, …
Radix sort (cont.)

- copy the words from the bucket list back to the list, preserving order
- results in a list with words sorted by last letter

```
<table>
<thead>
<tr>
<th>&quot;baa&quot;</th>
<th>&quot;ebb&quot;</th>
<th>&quot;cad&quot;</th>
<th>&quot;ace&quot;</th>
<th>&quot;bee&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;b&quot;</td>
<td>&quot;e&quot;</td>
<td>&quot;c&quot;</td>
<td>&quot;d&quot;</td>
<td>&quot;e&quot;</td>
</tr>
</tbody>
</table>
```

- repeat, but now place words into buckets based on next-to-last letter
- results in a list with words sorted by last two letters

```
<table>
<thead>
<tr>
<th>&quot;baa&quot;</th>
<th>&quot;ebb&quot;</th>
<th>&quot;ace&quot;</th>
<th>&quot;bee&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;b&quot;</td>
<td>&quot;e&quot;</td>
<td>&quot;a&quot;</td>
<td>&quot;e&quot;</td>
</tr>
</tbody>
</table>
```

- repeat, but now place words into buckets based on first letter
- results in a sorted list

```
<table>
<thead>
<tr>
<th>&quot;ace&quot;</th>
<th>&quot;baa&quot;</th>
<th>&quot;bad&quot;</th>
<th>&quot;bee&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;a&quot;</td>
<td>&quot;b&quot;</td>
<td>&quot;c&quot;</td>
<td>&quot;e&quot;</td>
</tr>
</tbody>
</table>
```

big-Oh analysis?