
1

1

CSC 533: Organization of
Programming Languages

Spring 2005

Data types
primitive types (integer, float, boolean, char, pointer)
heap management, garbage collection
complex data types (string, enum, subrange, array, record, …)
expressions and assignments

We will focus on C++ and Java as example languages

2

languages often provide several sizes/ranges

in C++/Java short (2 bytes in Java)
int (4 bytes in Java)
long (8 bytes in Java)

absolute sizes are implementation dependent in C++ TRADEOFFS?

Java has a byte type (1 byte)

in C++, char is considered an integer type

most languages use 2’s complement notation for negatives
1 = 00000001 -1 = 11111111
2 = 00000010 -2 = 11111110
3 = 00000011 -3 = 11111101

Primitive types: integer

2

3

again, languages often provide several sizes/ranges

in C++/Java float (4 bytes in Java)
double (8 bytes in Java)

C++ also has a long double type

historically, floating-points have been stored in a variety of formats
same basic components: sign, fraction, exponent

in 1985, IEEE floating-point formats were standardized

Primitive types: floating-point

1 8 23 bits

1 11 52 bits

sign exponent fraction

(sign)fraction x 2exponent

special bit patterns represent:
infinity
NaN

other number types: decimal, fixed-point, rational, …

4

introduced in ALGOL 60

C does not have a boolean type, uses zero (true) and nonzero (false)

C++ has bool type
really just syntactic sugar, automatic conversion between int and bool

Java has boolean type
no conversions between int and bool

implementing booleans
could use a single bit, but not usually accessible
use smallest easily-addressable unit (e.g., byte)

Primitive types: boolean

3

5

stored as numeric codes, e.g., ASCII (C++) or UNICODE (Java)

in C++, char is an integer type
can apply integer operations, mix with integer values

char ch = ’A’; char ch = ’8’;
ch = ch + 1; int d = ch – ’0’;
cout << ch << endl cout << d << endl;

in Java, char to int conversion is automatic
but must explicitly cast int to char

char next = (char)(ch + 1);

Primitive types: character

6

a pointer is nothing more than an address (i.e., an integer)

useful for:
dynamic memory management (allocate, dereference, deallocate)
indirect addressing (point to an address, dereference)

PL/I was the first language to provide pointers
pointers were not typed, could point to any object

no static type checking for pointers

ALGOL 68 refined pointers to a specific type

in many languages, pointers are limited to dynamic memory management
e.g., Pascal, Ada, Java, …

Primitive types: pointer

4

7

C++ allows for low-level memory access using pointers

* dereferencing operator
& address-of operator

int x = 6;
int * ptr = &x;

int * ptr2 = ptr1;

*ptr2 = 3;

in C++, the 0 (NULL) address is reserved, attempted access ERROR

Java does not provide explicit pointers, but every non-primitive object is really a pointer

String str = “foo”;

Primitive types: pointer (cont.)

"foo"
str

8

Heap management
pointers access memory locations from the heap

(a dynamically allocated storage area)

simplest case: assume heap is divided into equal-size cells, each with a pointer
can treat the heap as a linked list of memory cells

HEAD OF FREE

.

.

.

keep pointer to head of free list

to allocate space, take from front of free list

to deallocate, put back at front

5

9

Heap example
int * ptr1 = new int;
*ptr1 = 99;

int * ptr2 = new int;
*ptr2 = 33;

delete ptr1;

int * ptr3 = new int;

*ptr3 = *ptr2 + 1;

HEAD OF FREE

.

.

.

stack heap

HEAD OF FREE

.

.

.

stack heap

ptr1

ptr2

99

33

HEAD OF FREE

.

.

.

stack heap

ptr1

ptr2

34

33
ptr3

HEAD OF FREE

.

.

.

stack heap

ptr1

ptr2

99

33

10

Pointer problems
returning memory to the free list is easy, but when do you do it?

dangling reference: memory is deallocated, but still have a pointer to it

int * Foo() system allocated memory is deallocated automatically
{ (lifetime ends with scope)

int x = 5;
return &x;

}

garbage reference: pointer is destroyed, but memory has not been deallocated

void Bar() explicit allocation (new) requires explicit deallocation (delete)
{

int * ptr = new int;
…

}

would like to automatically and safely reclaim heap memory
2 common techniques: reference counts, garbage collection

6

11

Reference counts

along with each heap element, store a reference count
indicates the number of pointers to the heap element

when space is allocated, its reference count is set to 1
each time a new pointer is set to it, increment the reference count
each time a pointer is destroyed, decrement the reference count

provides simple method for avoiding garbage & dangling references
if result of an operation leaves reference count at 0, reclaim memory
can even double check explicit deallocations

12

Reference counts example
int * ptr1 = new int;
*ptr1 = 9;

int * ptr2 = new int;

*ptr2 = 75;
/* CHECKPOINT 1 */

ptr1 = ptr2;

/* CHECKPOINT 2 */

if (*ptr1 <= *ptr2) {

int * temp = new int;
*temp = 1024;

ptr1 = temp;

/* CHECKPOINT 3 */

}

int * ptr3 = new int;

*ptr3 = 21;
/* CHECKPOINT 4 */

HEAD OF FREE

HEAPSTACK

stack
ptr

????

????

7

13

Reference counts (cont.)

unfortunately, reference counts are very costly
must update & check reference counts for each assignment, end of lifetime

int *p, *q;

…

p = q; 1) access *p, decrement reference count
2) if count = 0, deallocate
3) copy l-value of q to p
4) access *q, increment reference count

reference counts are popular in parallel programming
work is spread evenly

14

Garbage collection
philosophy: dangling refs are much worse than garbage refs
approach: allow garbage to accumulate, only collect if out of space

as program executes, no reclamation of memory (thus, no cost)
when out of memory, take the time to collect garbage (costly but rare)

e.g., toothpaste tube analogy

2 stages in garbage collection
1. mark all “active” elements

recursively traverse all data structures (from the stack),
mark all used memory cells

2. sweep through the heap sequentially, collecting all unmarked cells

8

15

Garbage collection example
int * ptr1 = new int;
*ptr1 = 9;

int * ptr2 = new int;

*ptr2 = 75;
/* CHECKPOINT 1 */

ptr1 = ptr2;

/* CHECKPOINT 2 */

if (*ptr1 <= *ptr2) {

int * temp = new int;
*temp = 1024;

ptr1 = temp;

/* CHECKPOINT 3 */

}

int * ptr3 = new int;

*ptr3 = 21;
/* CHECKPOINT 4 */

HEAD OF FREE

HEAPSTACK

stack
ptr

????

????

16

Variable-sized elements

suppose need to store 3 element array
must be contiguous

here, 3 spaces are free, but
allocations/deallocations have not left 3 contiguous

HEAD OF
FREE

heap

USED

USED

USED

memory management is trickier if allocated in unequal sizes
allocating/deallocating memory can leave gaps in the heap (fragmentation)

must be able to defragment (a.k.a compactify) the heap
copy/shift all used memory in order to coalesce free space

9

17

Complex data types
early languages had limited data types

FORTRAN elementary types + arrays
COBOL introduced structured data type for record
PL/I included many data types, with the intent of supporting

a wide range of applications

better approach: ALGOL 68 provided a few basic types & a few flexible combination
methods that allow the programmer to structure data

common types/structures:
string enumeration subrange
array record union
set list . . .

18

Strings
can be a primitive type (e.g., Scheme, SNOBOL)
can be a special kind of character array (e.g., Pascal, Ada, C)

In C++ & Java, OOP can make the string type appear primitive

C++ string type is part of the STL (Standard Template Library)

#include <string>

operators/functions include

<< >> + += == != < > <= >=
[] length contains substr find

Java String type is part of the java.lang package (automatically loaded)

+ += equals length charAt substring indexOf

10

19

C++ strings
C++ string class is built on top of C-style strings

in C, the convention is to store a string as a char array, terminated with ’\0’

char str[] = ”Dave”; str ’D’ ’a’ ’v’ ’e’ ’\0’

the C library file string.h contains useful routines (e.g, strlen,strcmp)

C-style strings are very low-level
must perform own allocation/deallocation
not safe – can access the ’\0’ character
messy!

C++ class encapsulates C-style strings nicely
handles memory management automatically
safe, hides the ’\0’ character
defines standard operators

20

Java strings
in Java, strings are reference types (dynamic objects)

String str1 = new String(”Hello”);

String str2 = ”World”;

Strings are immutable
can’t change individual characters, but can reassign an entire new value

str1 = str1 + ”!”;

str2 = str2.substring(0, 2) + ”u” + str2.substring(3, 5);

reason: structure sharing is used to save memory

Java also provides StringBuffer class
allows changes to individual characters, can convert to and from String

11

21

Java strings (cont.)
in Java, all non-primitive types are objects

implemented as pointers to dynamically allocated data
non-primitive types are known as reference types

String str1 = ”foo”; str1 ”foo”

. . .

as a result:
• reference types appear to be passed by-reference (more later)

• cannot use == to compare reference types
String provides equals method for comparisons

if (str1.equals(str2)) { . . . }

22

Enumerations & subranges
an enumeration is a user-defined ordinal type

all possible values (symbolic constants) are enumerated

in C++ & Java: enum Day {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

C++: enum values are mapped to ints by the preprocessor (kludgy)
Day today = Wed; // same as today = 2;
cout << today << endl; // prints 2
today = 12; // illegal

Java: enum values are treated as new, unique values
Day today = Day.Wed;
System.out.println(today); // prints Wed

some languages allow new types that are subranges of other types
subranges inherit operations from the parent type
can lead to clearer code (since more specific), safer code (since range checked)

in Ada: subtype Digits is INTEGER range 0..9;

no subranges in C++ or Java

12

23

Arrays
an array is a homogeneous aggregate of data elements that supports random

access via indexing

design issues:
index type (C++ & Java only allow int, others allow any ordinal type)
index range (C++ & Java fix low bound to 0, others allow any range)
bindings

static (index range fixed at compile time, memory static)
– FORTRAN, C++ (for globals)

fixed stack-dynamic (range fixed at compile time, memory stack-dynamic)
– Pascal, C++ (for locals)

stack-dynamic (range fixed when bound, memory stack-dynamic)
– Ada

heap-dynamic (range can change, memory heap-dynamic)
– C++ & Java (using new), JavaScript

dimensionality (C++ & Java only allow 1-D, but can have array of arrays)

24

C++ arrays
C++ thinks of an array as a pointer to the first element

when referred to, array name is converted to its starting address

int counts[NUM_LETTERS]; // counts ≡ &counts[0]

which explains why…
1. can’t assign arrays as a whole
2. don’t specify array size in a parameter

void Init(int array[], int size);
void Init(int * array, int size);

3. arrays appear to be passed by-reference (more later)
4. array indexing is not bounds checked

implemented via pointer arithmetic: array[k] ≡ *(array+k)
*(array-1) *array *(array+1) *(array+2)

the pointer type determines the distance added to the pointer

13

25

dynamic arrays & vectors
since array is a pointer, can dynamically allocate memory from heap

cin >> numNums;
int * nums = new int[numNums]; // allocates array of ints

for (int i = 0; i < numNums; i++) { // can access like any other array
nums[i] = i;

}

. . .

delete nums; // responsible for deallocating

vector class encapsulates a dynamic array, provides useful methods
similar to how string class encapsulates a C-style string, adds functionality

vector<int> nums(numNums); // creates a vector of ints

constructor allocates the array from the heap, destructor deallocates
[] operator performs bounds checking on index
resize method truncates or expands the vector:
allocates new array, copies entries, deallocates old array, resets array pointer

26

Java arrays
in Java, arrays are reference types (dynamic objects)

must: 1) declare an array int nums[];

2) allocate space nums = new int[20];

can combine: int nums[] = new int[20];

as in C++, array indices start at 0
unlike C++, performs bounds checking, can access length field

for (int i = 0; i < nums.length; i++) {
System.out.println(nums[i]);

}

like C++, Java also provides a more flexible ArrayList class

14

27

Records
a record is a (possibly) heterogeneous aggregate of data elements, each

identified by a field name

heterogeneous flexible access by field name restrictive

in C++: have both struct and class (only class in Java)
only difference: default protection (public in struct, private in class)
structs can have member functions, but generally used for C-style structures

struct Person {

string lastName, firstName;
char middleInit;

int age;

};

assignment, copy constructor are provided by default, must define other ops

28

Unions (variant records)
a union is allowed to store different values at different times

struct Person {

string name; name
union {

string spouse; spouse/
string relative; relative

}

};

C++ does no type checking wrt unions
Person p;

p.relative = ”Mom”;
cout << p.spouse << endl;

in Ada, a tag value forces type checking (can only access one way)

no unions in Java

15

29

when an assignment is evaluated,
expression on rhs is evaluated first, then assigned to variable on lhs

within an expression, the order of evaluation can make a difference
x = 2; foo(x++, x);
y = x + x++;

in C++, if not covered by precedence/associativity rules, order is undefined
(i.e., implementation dependent) – similarly, in Pascal, Ada, … WHY?

Assignments and expressions

one exception: boolean expressions with and/or are evaluated left-to-right

for (int i = 0; i < size && nums[i] != 0; i++) {
. . .

}

in Java, expressions are always evaluated left-to-right

30

Type coercion in expressions
most languages (including C++) do some type coercion automatically

double sum = 3.2 + 5; // sum = 8.2

class Rational
{
public:

Rational(int num = 0, int denom = 1);
int GetNumerator();
int GetDenominator();
Rational & operator+(const Rational & rhs);

private:
int numerator, denominator;

};

Rational r1(2, 3); // r1 = 2/3
Rational r2(3); // r2 = 3/1
Rational r3; // r3 = 0/1

r3 = r1 + r2; // r3 = 11/3

r3 = r1 + 5; // r3 = 17/3

when define new C++ types (classes),
constructors define implicit coercions

if have constructor that takes an int as
argument, then the compiler will be able to
coerce ints to the new type
this can be handy, but extremely
dangerous!!!!
programmer must ensure that coercion
paths are unique

coercion is limited in Java, explicit

