
1

1

CSC 533: Organization of
Programming Languages

Spring 2005

Advanced Scheme programming

memory management: structure sharing, garbage collection
structuring data: association list, trees
let expressions
non-functional features: set!, read, display, begin
OOP in Scheme

2

Memory management in Scheme
all data is dynamically allocated (heap-based)

variables (from function definitions, let-expressions) may be stored on stack

underlying lists is the dotted-pair structure

(a b c) ≡ (a . (b . (c . ())))

a

b

()c

this structure demonstrates
non-contiguous nature of lists (non-linear linked-lists)
behavior of primitive operations (car, cdr, cons)

(car '(a b c)) ≡ (car '(a . (b . (c . ())))) a

(cdr '(a b c)) ≡ (cdr '(a . (b . (c . ())))) (b . (c . ())) ≡ (b c)

(cons 'x '(a b c)) ≡ (cons 'x '(a . (b . (c . ()))))

(x . (a . (b . (c . ())))) ≡ (x a b c)

2

3

Structure sharing
since destructive assignments are rare, Scheme makes extensive use of

structure-sharing

(define (my-length lst)
(if (null? lst)

0
(+ 1 (my-length (cdr lst)))))

(my-length '(a b c))
3

each recursive call shares a part of the list

other code that uses a, b, c or () can share as well

problems caused by destructive assignments? solutions?

a

b

()c

4

Garbage collection
garbage collection is used to reclaim

heap memory

(define (f1 x y z)
(cons x (f2 y z)))

(define (f2 v w)
(cons v w))

(f1 'a '(b c) '(d e))
(a (b c) d e)

3

5

Structuring data
an association list is a list of "records"

each record is a list of related information, keyed by the first field

(define NAMES '((Smith Pat Q)
(Jones Chris J)
(Walker Kelly T)
(Thompson Shelly P)))

note: can use define to
create "global constants"
(for convenience)

can access the record (sublist) for a particular entry using assoc

(assoc 'Smith NAMES) (assoc 'Walker NAMES)
(Smith Pat Q) (Walker Kelly T)

assoc traverses the association list, checks the car of each sublist

(define (my-assoc key assoc-list)
(cond ((null? assoc-list) #f)

((equal? key (caar assoc-list)) (car assoc-list))
(else (my-assoc key (cdr assoc-list)))))

6

Association lists
to access structured data,

store in an association list with search key first
access via the search key (using assoc)
use car/cdr to select the desired information from the returned record

(define MENU '((bean-burger 2.99)
(tofu-dog 2.49)
(fries 0.99)
(medium-soda 0.79)
(large-soda 0.99)))

(cadr (assoc 'fries MENU))
0.99

(cadr (assoc 'tofu-dog MENU))
2.49

(define (price item)
(cadr (assoc item MENU)))

4

7

assoc example
consider a more general problem: determine price for an entire meal

represent the meal order as a list of items,
e.g., (tofu-dog fries large-dew)

use recursion to traverse the meal list, add up price of each item

(define (meal-price meal)
(if (null? meal)

0.0
(+ (price (car meal)) (meal-price (cdr meal)))))

alternatively, could use map & apply

(define (meal-price meal)
(apply + (map price meal)))

8

Non-linear data structures
note: can represent non-linear structures using lists

e.g. trees

(dog
(bird (aardvark () ()) (cat () ()))
(possum (frog () ()) (wolf () ())))

dog

bird possum

aardvark cat frog wolf

empty tree is represented by the empty list: ()
non-empty tree is represented as a list: (ROOT LEFT-SUBTREE RIGHT-SUBTREE)

can access the the tree efficiently
(car TREE) ROOT
(cadr TREE) LEFT-SUBTREE
(caddr TREE) RIGHT-SUBTREE

5

9

Tree routines
(define TREE1

' (dog

(bird (aardvark () ()) (cat () ()))

(possum (frog () ()) (wolf () ()))))

(define (empty? tree)

(null? tree))

(define (root tree)

(if (empty? tree)
'ERROR

(car tree)))

(define (left-subtree tree) (define (right-subtree tree)
(if (empty? tree) (if (empty? tree)

'ERROR 'ERROR

(cadr tree))) (caddr tree)))

dog

bird possum

aardvark cat frog wolf

10

Tree searching

note: can access root & either subtree in constant time
can implement binary search trees with O(log N) access

binary search tree: for each node, all values in left subtree are <= value at node
all values in right subtree are > value at node

(define (bst-contains? bstree sym)
(cond ((empty? tree) #f)

((= (root tree) sym) #t)
((> (root tree) sym) (bst-contains? (left-subtree tree) sym))
(else (bst-contains? (right-subtree tree) sym))))

27

15 33

4 22 32 34

note: recursive nature of trees makes them ideal for recursive traversals

6

11

Tree traversal
(define (pre-order tree)

(if (null? tree)
'()
(append (list (car tree))

(pre-order (cadr tree))
(pre-order (caddr tree)))))

(define (in-order tree)
(if (null? tree)

'()
(append (in-order (cadr tree))

(list (car tree))
(in-order (caddr tree)))))

(define (post-order tree)
(if (null? tree)

'()
(append (post-order (cadr tree))

(post-order (caddr tree))
(list (car tree)))))

dog

bird possum

aardvark cat frog wolf

•pre-order traversal?

•in-order traversal?

•post-order traversal?

12

Finally, variables!
Scheme does provide for variables and destructive assignments

(define x 4) define creates and initializes a variable
#<unspecified>

x
4

(set! x (+ x 1)) set! updates a variable
#<unspecified>

x
5

since Scheme is statically scoped, can have global variables
YUCK: destroys functional model, messes up structure sharing

7

13

Let expression
fortunately, Scheme provides a "clean" mechanism for creating variables to

store (immutable) values

(let ((VAR1 VALUE1)
(VAR2 VALUE2)
. . .
(VARn VALUEn))

EXPRESSION)

let expression introduces a new environment with
variables (i.e., a block)
good for naming a value (don't need set!)

a let expression has the same effect as creating a help function & passing value

as long as destructive assignments are not used, the functional model is preserved
in particular, structure sharing is safe

(let ((x 5) (y 10))

(let (z (x + y))

)

)

environment
where z = 15

environment
where x = 5 and
y = 10

14

Craps example
consider a game of craps:

if first roll is 7, then WINNER
if first roll is 2 or 12, then LOSER
if neither, then first roll is "point"

– keep rolling until get 7 (LOSER) or point (WINNER)

(define (craps)

(define (roll-until point)
(let ((next-roll (+ (random 6) (random 6) 2)))
(cond ((= next-roll 7) 'LOSER)

((= next-roll point) 'WINNER)
(else (roll-until point)))))

(let ((roll (+ (random 6) (random 6) 2)))
(cond ((or (= roll 2) (= roll 12)) 'LOSER)

((= roll 7) 'WINNER)
(else (roll-until roll)))))

8

15

Craps example with I/O
to see the results of the rolls, could append rolls in a list and return

or, bite the bullet and use non-functional features
display displays S-expr (newline yields carriage return)
read reads S-expr from input
begin provides sequencing (for side effects)

(define (craps)

(define (roll-until point)
(let ((next-roll (+ (random 6) (random 6) 2)))

(begin (display "Roll: ")(display next-roll) (newline)
(cond ((= next-roll 7) 'LOSER)

((= next-roll point) 'WINNER)
(else (roll-until point))))))

(let ((roll (+ (random 6) (random 6) 2)))
(begin (display "Point: ") (display roll) (newline)

(cond ((or (= roll 2) (= roll 12)) 'LOSER)
((= roll 7) 'WINNER)
(else (roll-until roll))))))

16

OOP in Scheme
map & apply showed that functions are first-class objects in Scheme

can be passed as inputs to other functions
can be returned as the output of other functions

can use this feature to provide object-oriented programming

example: bank account
data: account balance
operations: initialize with some amount

deposit some amount
withdraw some amount

9

17

Naïve (imperative) solution

use global variable to represent the balance
initialize and update the balance using set!

(define balance 100)

(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount)) balance)
"Insufficient funds"))

(define (deposit amount)
(begin (set! balance (+ balance amount)) balance))

(withdraw 25)
75

(deposit 50)
125

(withdraw 200)
"Insufficient funds"

DRAWBACKS
• no encapsulation
• no data hiding
• not easily extended to

multiple accounts

18

OOP behavior
following OOP principles, would like the following behavior

(define savings (account 100)) creates an account called
savings, initialized to $100

(savings 'deposit 50) updates the savings account
by depositing $50

(savings 'withdraw 50) updates the savings account
by withdrawing $50

want balance to be inaccessible except through deposit & withdraw

SOLUTION: make an account object be a function
contains the balance as local data (as a parameter)
recognizes deposit and withdraw commands as input

10

19

OOP solution
(define (account balance)

(define (withdraw amount)
(if (>= balance amount)

(begin (set! balance (- balance amount)) balance)
"Insufficient funds"))

(define (deposit amount)
(begin (set! balance (+ balance amount)) balance))

(define (menu message arg)
(if (member message '(withdraw deposit))

((eval message) arg)
(else "Unknown operation")))

menu)

(define savings (account 100))

⇓

(define (menu message arg)
(if (member message '(withdraw deposit))

((eval message) arg)
(else "Unknown operation")))

since the returned function is in the scope of the balance parameter, that value is
maintained along with the function

(savings 'deposit 50) applies the menu function to the arguments

20

OOP analysis
this implementation provides

encapsulation: balance & operations are grouped together
data hiding: balance is hidden in an account object, accessible via ops

can have multiple objects – each has its own private balance

(define checking (account 100))
(define savings (account 500))

(checking 'withdraw 50)

(savings 'deposit 50)

note: this notation can become a bit awkward
most Schemes provide an OOP library that insulates the user from details
allows more natural definitions, inheritance, . . .

11

21

Scheme recap
simple & orthogonal

code & data are S-expressions
computation via function application, composition

symbolic & list-oriented
can manipulate words, flexible & abstract data structure
efficient (but less flexible) data structures are available

functional style is very natural
supports imperative & OOP styles if desired

first-class functions
leads to abstract, general functions (e.g., map, apply)
code = data flexibility

memory management is hidden
dynamic allocation with structure sharing, garbage collection
tail-recursion optimization is required

