
1 

1 

CSC 533: Programming Languages 
 

Spring 2015 

Advanced Scheme programming 
 

§  memory management: structure sharing, garbage collection 
§  structuring data: association list, trees 
§  let expressions 
§  non-functional features: set!, read, display, begin 
§  OOP in Scheme 

2 

Memory management in Scheme 
all data is dynamically allocated (heap-based) 

§  variables (from function definitions, let-expressions) may be stored on stack 
 
underlying lists is the dotted-pair structure 
 

(a b c)  ≡  (a . (b . (c . ()))) 

a

b

()c

this structure demonstrates 
§  non-contiguous nature of lists (non-linear linked-lists) 
§  behavior of primitive operations  (car, cdr, cons) 

(car '(a b c)) ≡ (car '(a . (b . (c . ())))) à a  
 

(cdr '(a b c)) ≡ (cdr '(a . (b . (c . ())))) à (b . (c . ())) ≡ (b c) 
 

(cons 'x '(a b c)) ≡ (cons 'x '(a . (b . (c . ()))))   

                 à (x . (a . (b . (c . ())))) ≡ (x a b c) 



2 

3 

Structure sharing 
since destructive assignments are rare, Scheme makes extensive use of 

structure-sharing 
 

(define (my-length lst) 
  (if (null? lst) 
      0 
      (+ 1 (my-length (cdr lst))))) 
 
Ø  (my-length '(a b c)) 
3 

 
 
§  each recursive call shares a part of the list 

§  other code that uses a, b, c or () can share as well 

problems caused by destructive assignments?  solutions? 

a

b

()c

4 

Garbage collection 
garbage collection is used to 

reclaim heap memory 
 
 

(define (f1 x y z) 
  (cons x (f2 y z))) 
 
(define (f2 v w) 
  (cons v w)) 
 
 
Ø  (f1 'a '(b c) '(d e)) 
(a (b c) d e) 

 



3 

5 

Structuring data 
an association list is a list of "records"  

§  each record is a list of related information, keyed by the first field 
§  i.e., a Map 

(define NAMES '((Smith Pat Q) 
                (Jones Chris J) 
                (Walker Kelly T) 
                (Thompson Shelly P))) 

note: can use define to 
create "global constants" 
(for convenience) 

§  can access the record (sublist) for a particular entry using assoc 
 
Ø (assoc 'Smith NAMES)  Ø (assoc 'Walker NAMES) 
(Smith Pat Q)    (Walker Kelly T) 

§  assoc traverses the association list, checks the car of each sublist 
 
(define (my-assoc key assoc-list) 
  (cond ((null? assoc-list) #f) 
        ((equal? key (caar assoc-list)) (car assoc-list)) 
        (else (my-assoc key (cdr assoc-list))))) 

6 

Association lists 
to access structured data, 

§  store in an association list with search key first 
§  access via the search key (using assoc) 
§  use car/cdr to select the desired information from the returned record 

(define MENU '((bean-burger 2.99) 
               (tofu-dog 2.49) 
               (fries 0.99) 
               (medium-soda 0.79) 
               (large-soda 0.99))) 

Ø (cadr (assoc 'fries MENU)) 
0.99 
 
Ø (cadr (assoc 'tofu-dog MENU)) 
2.49 

(define (price item) 
  (cadr (assoc item MENU))) 



4 

7 

assoc example 
consider a more general problem: determine price for an entire meal 

§  represent the meal order as a list of items,  
e.g., (tofu-dog fries large-soda)  

§  use recursion to traverse the meal list, add up price of each item 

(define (meal-price meal) 
  (if (null? meal) 
      0.0 
      (+ (price (car meal)) (meal-price (cdr meal))))) 

§  alternatively, could use map & apply 

(define (meal-price meal) 
  (apply + (map price meal))) 

8 

Finally, variables! 
Scheme does provide for variables and destructive assignments 

 
Ø (define x 4)   define creates and initializes a variable 
Ø 
 
Ø x 
4 
 
Ø  (set! x (+ x 1))   set! updates a variable  
Ø 
 
Ø  x 
5 

since Scheme is statically scoped, can have global variables   
YUCK: destroys functional model, messes up structure sharing 



5 

9 

Let expression 
fortunately, Scheme provides a "clean" mechanism for creating variables to 

store (immutable) values 

(let ((VAR1 VALUE1) 
      (VAR2 VALUE2) 
      . . . 
      (VARn VALUEn)) 
  EXPRESSION) 

let expression introduces a new environment with 
variables (i.e.,  a block) 

good for naming a value (don't need set!) 

a let expression has the same effect as creating a help function & passing value 
 

as long as destructive assignments are not used, the functional model is preserved 
§  in particular, structure sharing is safe 

(let ((x 5) (y 10)) 
 

  (let (z (x + y)) 
 

  ) 
 

) 

environment 
where z = 15 

environment 
where x = 5 and  
y = 10 

Example: circle of friends 
suppose we want to compute a person's circle of friends 

§  level 1: direct friends 
§  level 2: direct friends + friends of direct friends 

 … 

§  level n : level (n-1) friends + friends of level (n-1) friends 

10 

(define FRIENDS 
  '((amy (bob dan elle)) (bob (amy dan)) (chaz (dan elle)) 
    (dan (chaz)) (elle (amy bob chaz dan)) (fred (dan)))) 
 
(define (getFriends person) 
  (cadr (assoc person FRIENDS))) 
 
(define (getCircle person distance) 
  (if (= distance 1) 
      (getFriends person) 
      (let ((circle (getCircle person (- distance 1)))) 
        (append circle (apply append (map getFriends circle)))))) 



6 

Example: circle of friends (cont.) 
consider Amy's circle of friends 

§  level 1: (bob dan elle)  
§  level 2: (bob dan elle) + (amy dan) + (chaz) + (amy bob chaz dan) à 

       (bob dan elle amy dan chaz amy bob chaz dan) 

11 

(require scheme/list) 
 
(define FRIENDS 
  '((amy (bob dan elle)) (bob (amy dan)) (chaz (dan elle)) 
    (dan (chaz)) (elle (amy bob chaz dan)) (fred (dan)))) 
 
(define (getFriends person) 
  (cadr (assoc person FRIENDS))) 
 
(define (getCircle person distance) 
  (if (= distance 1) 
      (getFriends person) 
      (let ((circle (getCircle person (- distance 1)))) 
        (remove person  
                (remove-duplicates (append circle 
                                           (apply append  
                                                 (map getFriends circle)))))))) 

don't list self in 
circle of friends 

don't list duplicates 
in circle of friends 

12 

Example: craps simulation 
consider a game of craps: 

§  if first roll is 7, then WINNER 
§  if first roll is 2 or 12, then LOSER 
§  if neither, then first roll is "point"  

– keep rolling until get 7 (LOSER) or point (WINNER) 
 
 
   (define (craps) 

  
  (define (roll-until point) 

       (let ((next-roll (+ (random 6) (random 6) 2))) 
      (cond ((= next-roll 7) 'LOSER) 
            ((= next-roll point) 'WINNER) 
            (else (roll-until point))))) 
     
  (let ((roll (+ (random 6) (random 6) 2))) 
    (cond ((or (= roll 2) (= roll 12)) 'LOSER) 
          ((= roll 7) 'WINNER) 
          (else (roll-until roll))))) 



7 

13 

Example: craps with history list 
as is, all you see from craps is WINNER or LOSER 

§  would like to see the actual rolls to confirm proper behavior 

the "functional way" is to construct a list of the rolls & return it 
 

 
 (define (craps) 

  
  (define (roll-until point) 

       (let ((next-roll (+ (random 6) (random 6) 2))) 
      (cond ((= next-roll 7) (list next-roll 'LOSER)) 
            ((= next-roll point) (list next-roll 'WINNER)) 
            (else (cons next-roll (roll-until point)))))) 
     
  (let ((roll (+ (random 6) (random 6) 2))) 
    (cond ((or (= roll 2) (= roll 12)) (list roll 'LOSER)) 
          ((= roll 7) (list roll 'WINNER)) 
          (else (cons roll (roll-until roll))))) 

14 

Example: craps with I/O 
alternatively, can bite the bullet and use non-functional features 

§  display displays S-expr (newline yields carriage return) 
§  read  reads S-expr from input 
§  begin  provides sequencing (for side effects) 

 
 
   (define (craps) 
 

  (define (roll-until point) 
       (let ((next-roll (+ (random 6) (random 6) 2))) 

      (begin (display "Roll: ")(display next-roll) (newline) 
             (cond ((= next-roll 7) 'LOSER) 
                   ((= next-roll point) 'WINNER) 
                   (else (roll-until point)))))) 
     
  (let ((roll (+ (random 6) (random 6) 2))) 
    (begin (display "Point: ") (display roll) (newline) 
           (cond ((or (= roll 2) (= roll 12)) 'LOSER) 
                 ((= roll 7) 'WINNER) 
                 (else (roll-until roll)))))) 



8 

15 

Non-linear data structures 
note: can represent non-linear structures using lists 
 
e.g. trees 
 

      (dog 
        (bird (aardvark () ()) (cat () ())) 

        (possum (frog () ()) (wolf () ()))) 

dog

bird possum

aardvark cat frog wolf

§  empty tree is represented by the empty list: () 
§  non-empty tree is represented as a list: (ROOT LEFT-SUBTREE RIGHT-SUBTREE) 

§  can access the the tree efficiently 
 

  (car TREE)  è  ROOT 
(cadr TREE)  è  LEFT-SUBTREE 
(caddr TREE)  è  RIGHT-SUBTREE 

16 

Tree routines 
(define TREE1  

    ' (dog 

  (bird (aardvark () ()) (cat () ())) 

  (possum (frog () ()) (wolf () ())))) 

 

 

(define (empty-tree? tree) 

  (null? tree)) 

 

(define (root tree) 

  (if (empty-tree? tree) 

      'ERROR 

      (car tree))) 

 

(define (left-subtree  tree)   (define (right-subtree tree) 

  (if (empty-tree? tree)     (if (empty-tree? tree) 

      'ERROR           'ERROR 

      (cadr tree)))                (caddr tree))) 

dog

bird possum

aardvark cat frog wolf



9 

17 

Tree searching 

note: can access root & either subtree in constant time 
 à can implement binary search trees with O(log N) access 

 
binary search tree: for each node, all values in left subtree are <= value at node 

               all values in right subtree are > value at node 
 
 
 
 

 
 
(define (bst-contains? bstree sym) 
  (cond ((empty-tree? bstree) #f) 
        ((= (root bstree) sym) #t) 
        ((> (root bstree) sym) (bst-contains? (left-subtree bstree) sym)) 
        (else (bst-contains? (right-subtree bstree) sym)))) 

27

15 33

4 22 32 34

note: recursive nature of trees makes them ideal for recursive traversals 

18 

Tree traversal 
(define (pre-order tree) 
  (if (empty-tree? tree) 
      '() 
      (append (list (car tree)) 
              (pre-order (cadr tree)) 
              (pre-order (caddr tree))))) 

 
(define (in-order tree) 
  (if (empty-tree? tree) 
      '() 
      (append (in-order (cadr tree)) 
              (list (car tree)) 
              (in-order (caddr tree))))) 

 
(define (post-order tree) 
  (if (empty-tree? tree) 
      '() 
      (append (post-order (cadr tree)) 
              (post-order (caddr tree)) 
              (list (car tree))))) 

dog

bird possum

aardvark cat frog wolf

• pre-order traversal? 

• in-order traversal? 

• post-order traversal? 



10 

In class exercises 

(define (num-nodes tree) 

    ??? ) 
 

 

(define (sum-values numtree) 

    ??? ) 

 
 

(define (max-value numtree) 

    ??? ) 

 

19 

20 

OOP in Scheme 
map & apply showed that functions are first-class objects in Scheme 

§  can be passed as inputs to other functions 
§  can be returned as the output of other functions 

can use this feature to provide object-oriented programming 

example: bank account 
data:  account balance 
operations:  initialize with some amount 

   deposit some amount 
   withdraw some amount 



11 

21 

Naïve (imperative) solution 

§  use global variable to represent the balance 
§  initialize and update the balance using set! 

(define balance 100) 

 

(define (withdraw amount) 

  (if (>= balance amount) 

      (begin (set! balance (- balance amount)) balance) 

      "Insufficient funds")) 

 

(define (deposit amount) 

  (begin (set! balance (+ balance amount)) balance)) 

 

 

Ø (withdraw 25) 

75 

Ø (deposit 50) 

125 

Ø (withdraw 200) 

"Insufficient funds" 

DRAWBACKS 
•   no encapsulation 
•   no data hiding 
•  not easily extended to  

 multiple accounts 

22 

OOP behavior 
following OOP principles, would like the following behavior 
 

(define savings (account 100))  creates an account called 
       savings, initialized to $100 

 
(savings 'deposit 50)    updates the savings account 

       by depositing $50 
 
(savings 'withdraw 50)    updates the savings account 

       by withdrawing $50 
 

want balance to be inaccessible except through deposit & withdraw 

SOLUTION: make an account object be a function 
§  contains the balance as local data (as a parameter) 
§  recognizes deposit and withdraw commands as input 



12 

23 

OOP solution 
(define (account balance) 
   

  (define (withdraw amount) 

    (if (>= balance amount) 

        (begin (set! balance (- balance amount)) balance) 

        "Insufficient funds")) 

 

  (define (deposit amount) 

    (begin (set! balance (+ balance amount)) balance)) 

 

  (define (menu message arg)     

    (cond ((equal? message 'deposit) (deposit arg)) 

          ((equal? message 'withdraw) (withdraw arg)) 

          ((else "Unknown operation")))) 

  menu) (define savings (account 100)) 

   ⇓ 

(define (menu message arg) … ) 

since the returned function is in the scope of the balance parameter, that value is 
maintained along with the function 

(savings 'deposit 50)  applies the menu function to the arguments 

24 

OOP analysis 
this implementation provides 

§  encapsulation:  balance & operations are grouped together 
§  data hiding:      balance is hidden in an account object, accessible via ops 

can have multiple objects – each has its own private balance 

(define checking (account 100))   
(define savings (account 500)) 

 

(checking 'withdraw 50) 

(savings 'deposit 50) 

note: this notation can become a bit awkward 
§  most Schemes provide an OOP library that insulates the user from details 
§  allows more natural definitions, inheritance, . . . 



13 

25 

Scheme recap 
simple & orthogonal 

§  code & data are S-expressions 
§  computation via function application, composition 

symbolic & list-oriented 
§  can manipulate words, flexible & abstract data structure 
§  efficient (but less flexible) data structures are available 

functional style is very natural 
§  supports imperative & OOP styles if desired 

first-class functions 
§  leads to abstract, general functions (e.g., map, apply) 
§  code = data è flexibility 

memory management is hidden 
§  dynamic allocation with structure sharing, garbage collection 
§  tail-recursion optimization is required 


