CSC 533: Programming Languages
Spring 2015

Subprogram implementation
= subprograms (procedures/functions/subroutines)
= subprogram linkage
= parameter passing
= run-time stack

We will focus on C, C++, and Java as example languages

Procedural control

any implementation method for subprograms is based on the semantics of
subprogram linkage (call & return)

in general, a subprogram call involves:
1. save execution status of the calling program unit
2. parameter passing
3. pass return address to subprogram
4. transfer control to subprogram
possibly: allocate local variables, provide access to non-locals

in general, a subprogram return involves:
1. if out-mode parameters or return value, pass back value(s)
2. deallocate parameters, local variables
3. restore non-local variable environment
4. transfer control to the calling program unit

Parameters

in most languages, parameters are positional
= Ada also provides keyword parameters:

AddEntry(dbase -> cds, new entry -> mine);

advantage: don’ t have to remember parameter order
disadvantage: do have to remember parameter names

Ada and C/C++ allow for default values for parameters

C/C++ & Java allow for optional parameters (specify with ...)

public static double average (double... values) {
double sum = 0;
for (double v : values) { sum += v; }

return sum / values.length;

}

System.out.println(average (3.2, 3.6));
System.out.println(average(l, 2, 4, 5, 8));

= if multiple parameters, optional parameter must be rightmost WHY?

Parameter passing

can be characterized by the direction of information flow

in mode: pass by-value
out mode: pass by-result
inout mode: pass by-value-result, by-reference, by-name

by-value (in mode)
= parameter is treated as local variable, initialized to argument value

advantage: safe (function manipulates a copy of the argument)
disadvantage: time & space required for copying

used in ALGOL 60, ALGOL 68
default method in C++, Pascal, Modula-2
only method in C (and, technically, in Java)

Parameter passing (cont.)

by-result (out mode)
= parameter is treated as local variable, no initialization
= when function terminates, value of parameter is passed back to argument

potential problems: ReadValues (x, x);

Update (1ist [GLOBAL]) ;

by-value-result (inout mode)
= combination of by-value and by-result methods
= treated as local variable, initialized to argument, passed back when done

same potential problems as by-result

used in ALGOL-W, later versions of FORTRAN

Parameter passing (cont.)

by-reference (inout mode)
= instead of passing a value, pass an access path (i.e., reference to argument)

advantage: time and space efficient
disadvantage: slower access to values (must dereference), alias confusion

void IncrementBoth(int & x, int & y) int a = 5;
{ IncrementBoth(a, a);

requires care in implementation: arguments must be I-values (i.e., variables)

used in early FORTRAN
can specify in C++, Pascal, Modula-2
Java objects look like by-reference

Parameter passing (cont.)

by-name (inout mode)
= argument is textually substituted for parameter
= form of the argument dictates behavior
if argument is a: variable = by-reference
constant - by-value
array element or expression > 7?7

real procedure SUM(real ADDER, int INDEX, int LENGTH) ;
begin
real TEMPSUM := 0;
for INDEX := 1 step 1 until LENGTH do
TEMPSUM := TEMPSUM + ADDER;
SUM := TEMPSUM;

end;

SUM(X, I, 100) > 100 * X
SUM(A[I], I, 100) > A[1l] + . . . + A[100]
SUM[A[I]*A[I], I, 100) > A[1]% + . . . + A[100]%

= flexible but tricky — used in ALGOL 60, replaced with by-reference in ALGOL 68

Parameters in Ada

in Ada, programmer specifies parameter mode
= implementation method is determined by the compiler

in - by-value
out -> by-result
inout -> by-value-result (for non-structured types)

—> by-value-result or by-reference (for structured types)

= choice of inout method for structured types is implementation dependent

DANGER: TncrementBoth (a, a) Yields different results for each method!

Parameters in Java

parameter passing is by-value, but looks like by-reference for objects
= recall, Java objects are implemented as pointers to dynamic data
public void messWith (ArrayList<String> 1lst)
{

1st.add ("okay”);

1st = new ArrayList<String>();

ArrayList<String> words = new ArrayList<String>(5); [:[:I:I:][]

messWith (words) ;
words D

size = 0

capacity = 5

when pass an object, by-value makes a copy (here, copies the pointer)
pointer copy provides access to data fields, can change
but, can’ t move the original

Polymorphism

in C/C++ & Java, can have different functions/methods with the same name
= overloaded functions/methods must have different parameters to distinguish

public double doStuff (String str) { .. }
public double doStuff (int x) { .. } // OK since param type is different

public int doStuff (String str) { ..} // not OK, since only return differs

in C++, can overload operators for new classes

bool Date::operator==(const Date & dl, const Date & d2) {

return (dl.day == d2.day &&
dl.month == d2.month &&
dl.year == d2.year);

}

= overloaded operators are NOT allowed in Java RISKS?

Implementing subprograms

= some info about a subprogram is independent of invocation
e.g., constants, instructions
=> can store in static code segment

= some info is dependent upon the particular invocation
e.g., return value, parameters, local variables (?)
=> must store an activation record for each invocation

Activation Record

= |ocal variables may be allocated when local variables
subprogram is called, or wait until parameters
declarations are reached (stack-dynamic) static link

dynamic link

return address

1

Run-time stack

when a subroutine is called, an instance of its activation record is pushed

program MAIN;

var a : integer;

P11 static |
procedure P1; dynamic
begin return

print a; ———,
end; {of Pl} P2 a=.? P2 a=.0 N
static static
dynamic |] dynamic |
procedure P2; return return
var a : integer;
begin 2=7 1 a=v 2= {
a := 07 MAIN called P2 called P1 called

P1l;
end; {of P2} . .
when accessing a non-local variable
begin + follow static links for static scoping

;2f= 7 « follow dynamic links for dynamic scoping

end. {of MAIN}

Run-time stack (cont.)

when a subroutine terminates, its activation record is popped (LIFO behavior)

program MAIN;

var a : integer; P1 static
dynamic
procedure P1l; return
begin
print a; P2 a=0 P2l a=2?
end; {of Pl} static static
dynamic dynamic |]
procedure P2; return return

var a : integer; .

begin)] D e ———
a = 0; P1 called P1 terminates P2 terminates
P1l;

end; {of P2}
when the last activation record is popped,

begin .
a iz 7: control returns to the operating system
P2;
end. {of MAIN} 13
Run-time stack (cont.)
note: the same subroutine may be called from different points in the program
program MAIN;
var a : integer;
P1| static
procedure P1; dynamic
begin return
print a; SE—
end; {of Pl} P2 a=0 H
static P1| static N
procedure P2; dynamic dynamic N
var a : integer; return return
begin
a := 0;) E—— —
p1; 1st call to P1 2nd call to P1
end; {of P2}
begin =>» using dynamic scoping, the same variable in a subroutine
32 = 7 may refer to a different addresses at different times
P2;
P1l;
end. {of MAIN} 14

In-class exercise

program MAIN;
var a : integer;

procedure Pl (x : integer);
procedure P3;
run-time stack? begin
print x, a;
end; {of P3}
begin
P3;
end; {of P1l}

output using static scoping?

procedure P2;

var a : integer;
begin
a :=0;
output using dynamic scoping? i Pi @;;;
end; {o
begin
a :=17;
P1(10);

P2;
end. {of MAIN}

Optimizing scoping

naive implementation:
= if variable is not local, follow chain of static/dynamic links until found

in reality, can implement static scoping more efficiently

= block nesting is known at compile-time, so can determine number of links that must
be traversed to reach desired variable

= can also determine the offset within the activation record for that variable

=> can build separate data structure that provides immediate access

can't predetermine # links or offset for dynamic scoping
= subroutine may be called from different points in the same program

= can’ t even perform type checking statically WHY NOT?

