
1

1

CSC 533: Programming Languages

Spring 2016

Data types

§  primitive types (integer, float, boolean, char, pointer)
§  heap management
§  reference counts vs. garbage collection
§  partition & copy vs. mark & sweep

We will focus on C, C++, and Java as example languages

2

languages often provide several sizes/ranges

in C/C++/Java short (2 bytes in Java)
 int (4 bytes in Java)
 long (8 bytes in Java)

absolute sizes are implementation dependent in C/C++ TRADEOFFS?

§  Java has a byte type (1 byte)

§  in C/C++, char is considered an integer type

§  most languages use 2’s complement notation for negatives
1 = 00…000001 -1 = 11…111111
2 = 00…000010 -2 = 11…111110
3 = 00…000011 -3 = 11…111101

Primitive types: integer

2

3

again, languages often provide several sizes/ranges

in C/C++/Java float (4 bytes in Java)
 double (8 bytes in Java)

C/C++ also have a long double type

§  historically, floating-points have been stored in a variety of formats
same basic components: sign, fraction, exponent

§  in 1985, IEEE floating-point formats were standardized

Primitive types: floating-point

1 8 23 bits

1 11 52 bits

sign exponent fraction

(sign)fraction x 2exponent

special bit patterns represent:
§  infinity
§  NaN

other number types: decimal, fixed-point, rational, …

4

introduced in ALGOL 60

C does not have a boolean type, conditionals use zero (false) and nonzero (true)

C++ has bool type

§  really just syntactic sugar, automatic conversion between int and bool

Java has boolean type

§  no conversions between int and boolean

implementing booleans
§  could use a single bit, but not usually accessible
§  use smallest easily-addressable unit (e.g., byte)

Primitive types: boolean

3

5

stored as numeric codes, e.g., ASCII (C/C++) or UNICODE (Java)

in C/C++, char is an integer type
§  can apply integer operations, mix with integer values

char ch = ’A’; char ch = ’8’;
ch = ch + 1; int d = ch – ’0’;
cout << ch << endl cout << d << endl;

in Java, char to int conversion is automatic
§  but must explicitly cast int to char

char next = (char)(ch + 1);

Primitive types: character

6

a pointer is nothing more than an address (i.e., an integer)

useful for:
§  dynamic memory management (allocate, dereference, deallocate)
§  indirect addressing (point to an address, dereference)

PL/I was the first language to provide pointers
§  pointers were not typed, could point to any object

è no static type checking for pointers

ALGOL 68 refined pointers to a specific type

in many languages, pointers are limited to dynamic memory management

 e.g., Pascal, Ada, Java, …

Primitive types: pointer

4

7

C/C++ allows for low-level memory access using pointers

* dereferencing operator & address-of operator

int x = 6;

int * ptr1 = &x;

int * ptr2 = ptr1;

*ptr2 = 3;

in C/C++, the 0 (NULL) address is reserved, attempted access à ERROR

Java does not provide explicit pointers,
but every object is really a pointer

String str = “foo”;

Primitive types: pointer (cont.)

8

Heap management
pointers access memory locations from the heap

 (a dynamically allocated storage area)

the heap is divided into equal-size cells, each with a pointer

§  the pointer fields are used initially to organize the heap as a linked list

HEAD OF FREE

.

.

.

§  keep pointer to head of free list

§  to allocate space, take from front of free list

§  to deallocate, put back at front

5

9

Heap example

String str1 = "foo";
String str2 = "bar";

/* CHECKPOINT 1 */

str1 = str2;

/* CHECKPOINT 2 */

String str3 = str1+"n";

/* CHECKPOINT 3 */

HEAD OF FREE

.

.

.

stack heap

HEAD OF FREE

.

.

.

stack heap

str1
str2

"foo"
"bar"

HEAD OF FREE

.

.

.

stack heap

str1
str2

"foo"
"bar"

HEAD OF FREE

.

.

.

stack heap

str1
str2

"barn"
"bar"

str3

10

Pointer problems
returning memory to the free list is easy, but when do you do it?

dangling reference: memory is deallocated, but still have a pointer to it

int * Foo() { a problem in C/C++, since the & operator allows access to stack
 int x = 5; memory that has already been reclaimed
 return &x;

} not a problem in Java since no equivalent to the & operator

garbage reference: pointer is destroyed, but memory has not been deallocated

void Bar() { a problem in both C/C++ and Java
 Date today = new Date(); when today's lifetime ends, its dynamic memory is inaccessible

 … (in C/C++, must explicitly deallocate dynamic memory w/ delete)
}

would like to automatically and safely reclaim heap memory
 2 common techniques: reference counts, garbage collection

6

11

Reference counts

along with each heap element, store a reference count

§  indicates the number of pointers to the heap element

§  when space is allocated, its reference count is set to 1
§  each time a new pointer is set to it, increment the reference count
§  each time a pointer is lost, decrement the reference count

provides a simple method for avoiding garbage & dangling references
§  if result of an operation leaves reference count at 0, reclaim memory
§  can even double check explicit deallocations

12

Reference counts example

String str1 = "foo";
String str2 = "bar";

/* CHECKPOINT 1 */

str1 = str2;

/* CHECKPOINT 2 */

if (str1.equals(str2)) {
 String temp = "biz";
 str2= temp;

 /* CHECKPOINT 3 */
}

String str3 = "baz";

/* CHECKPOINT 4 */

 HEAD OF FREE

HEAP STACK

stack
ptr

 ????

 ????

7

13

Reference counts (cont.)

unfortunately, reference counts are very costly
§  must update & check reference counts for each assignment, end of lifetime

String str1;

String str2;

…

str1 = str2; è 1) dereference str1, decrement count
 2) if count = 0, deallocate
 3) copy str1 reference to str2
 4) dereference str1, increment count

reference counts are popular in parallel programming
§  work is spread evenly

14

Garbage collection
approach: allow garbage to accumulate, only collect if out of space

as program executes, no reclamation of memory (thus, no cost)
when out of memory, take the time to collect garbage (costly but rare)

e.g., toothpaste tube analogy

2 common approaches to garbage collection
1.  Partition & Copy
2.  Mark & Sweep

8

15

Partition & Copy approach
1.  divide the memory space into 2 partitions: current + backup
2.  when the current partition is full,

a.  sweep through all active objects (from the stack)
b.  copy each active object to the backup partition (contiguously)
c.  when done, make that the current partition

HEAP

CURRENT
PARTITION

BACKUP
PARTITION

STACK

HEAP

BACKUP
PARTITION

CURRENT
PARTITION

STACK

when current
partition is full

copy to backup &
make it current

16

Partition & Copy example

String str1= "foo";
String str2= "bar";

/* CHECKPOINT 1 */

str1 = str2;

/* CHECKPOINT 2 */

if (str1.equals(str2)) {
 String temp = "biz";
 str2 = temp;

 /* CHECKPOINT 3 */
}

String str3 = "baz";

/* CHECKPOINT 4 */

 HEAD OF FREE

HEAP

 STACK

stack
ptr

 ????
 ????

9

17

Mark & Sweep approach
1.  mark all active objects

a.  sweep through all active objects (from the stack)
b.  mark each memory cell associated with an active object

2.  sweep through the heap and reclaim unmarked cells
a.  traverse the heap sequentially
b.  add each unmarked cell to the FREE list

HEAP

STACK

FREE HEAD

ACTIVE

ACTIVE

ACTIVE

HEAP

STACK

FREE HEAD

ACTIVE

ACTIVE

ACTIVE

traverse the
stack

and mark
active
objects

HEAP

STACK

FREE HEAD

traverse the
heap

and reclaim
unmarked
cells

18

Mark & Sweep example

String str1= "foo";
String str2= "bar";

/* CHECKPOINT 1 */

str1 = str2;

/* CHECKPOINT 2 */

if (str1.equals(str2)) {
 String temp = "biz";
 str2 = temp;

 /* CHECKPOINT 3 */
}

String str3 = "baz";

/* CHECKPOINT 4 */

 HEAD OF FREE

HEAP STACK

stack
ptr

 ????

 ????

10

19

Mark & Sweep & Compactify

as memory is allocated & deallocated, fragmentation occurs

e.g., suppose wish to allocate a 3 element array
previous allocations/deallocations have left 3 free cells, but not

contiguously
à must garbage collect (even though free space exists)

note: not all memory allocations are the same size
§  C/C++/Java: double bigger than float, array elements must be contiguous, …

using Partition & Copy, not a big problem
§  simply copy active objects to other partition – this automatically coalesces gaps

using Mark & Sweep, must add another pass to defragment the space
§  once active objects have been identified, must shift them in memory to remove gaps
§  COSTLY!

HEAD OF
FREE
heap

ACTIVE

ACTIVE

ACTIVE

20

Partition & Copy vs. Mark & Sweep & Compactify
Partition & Copy

§  wastes memory by maintaining the backup partition
§  but quick (especially if few active objects) and avoids fragmentation

Mark & Sweep & Compactify
§  able to use the entire memory space for active objects
§  but slow (2 complete passes through heap to reclaim and compactify)

Java takes a hybrid approach to provide automatic garbage collection
§  memory is divided into two types: new objects and old objects

§  the new objects partition is optimized for objects with short lifetimes
garbage collection happens relatively frequently
uses Partition & Copy, since it is expected that few active objects will remain

§  eventually, persistent new objects are moved to the old objects partition
garbage collections happens relatively infrequently
uses Mark & Sweep & Compactify, since many active objects will persist

