Ruby

By Colton, Kha, and Jonah

Background

- Developed by Yukihiro
Matsumoto “Matz” in 1993

- Publicly released in 1995

- Gained popularity in 2006

- Resembles Perl and Python

- Many active communities, but

somewhat in decline

Ruby-Talk
Discord and Reddit communities

Design Philosophy

- Matsumoto designed the language for productivity and fun
- "“Often people, especially computer engineers, focus on the machines.”
- Wanted Ruby to be focused on the person
- Combines Scripting with Object Oriented languages
- Created a Language he wanted to code in
- Matsumoto developed in Python, but disliked its inability to code like OOP
- Minimizing work and confusion, making the human efficient even at the cost of the machine

- Easyto learn, Easy to use

Functionalities

- Build web applications:

- Ruby: running a few commands, and you get a working application with a predefined directory structure,

database configurations.
- Python: Setting up a new Django project also requires running commands, but you may need to configure
settings and directory structures manually or through boilerplate code

- Framework: Ruby on Rails.
- Library: RubyGems @ e () airbnb € GitHub ~ Seribd.

Yammers (g Basecamp

& shopify 3% Slideshare

s

SOUNDCLOUD

Ruby on Rails

- Framework built on top of Ruby: simplicity and rapid development in web

development. (Limited)
- For those who prefers expressive and human-friendly syntax.
- Convention over Configuration.
- Python is more extensive: web development, data analysis, Al.

- Faster in execution time.
- Framework: Django

RubyGems

- Gems:
- Host repository of gems (libraries or packages).

- Dependency Management
- Gemfile and Gemfile.lock.

- Version and Update
- Semantic versioning, gem update

What makes Ruby Unique?

- Everything is an object
- Everything has methods
- Supports multiple
programming paradigms
- Procedural

- Object Oriented
- Functional

- Inspired by simple LISP
languages, with an Object
system and blocks like higher
order functions

class Primelist

def first_n_primes(numList, n)
def first_n_primes_helper(numList, n, currPrimes)
if(n > 0 & !(numList ==)D)
first_n_primes_helper(rest(numList.select

&(->(x, y) {y % x 1= @0}.curry[first(numList)]))),

n-1, currPrimes.push(first(numList)))
else
return currPrimes
end
end
first_n_primes_helper(numList, n, [])
end

What does this mean?

- Primitives in most languages are objects in Ruby
integers, booleans, nulls

- Multiple paradigms supports multiple language backgrounds
- Can code without classes (python)
Fully object oriented (Java)
Use anonymous functions (Clojure)

Features

Encapsulation AbstfaCtion

- Dynamically Bound

- Object-oriented Programming Systern) |
- Classes with Inheritance
- Mixins

- lterators

- Exception Handling

- Garbage Collection
Mark and sweep

Variables, Data types (dynamic vs static)

int x = 10; X = 10
String message = \ - message = ello
.out.println(message); print(message)

X = 10
message = "'hel
puts message

OOP

class Person public class Per
ivate String
attr_reader :name private String
public Person(String name) {
def initialize(this.name = name;
= name
end

ublic String getName() {
end p L8

return name;

person = .new("John")
puts person.name public static void main(
Person person = new Pe¢ on ("]
.out.println(person.getName());

class Person:
def __init_ (,
.hame = name

person = Person("
print(person.name)

Class Inheritance

class Person
lude PrintSelf

def initialize(name =
@name = name
end
end

class Student < Person

def initialize(name

super(name)
@school = school
end
end

"John", school="Creighton")

Modules and Mixins

module PrintSelf
def selfString
return "My name 1is #{self.name}, I am a #{self.class.name.downcase}."
end
end

people = [] John, I am a person.

people.push(Person.new())
team = ["Colton”, "Kha", "Jonah"] Colton, I am a student.

team.each {|name] Kha, I am a student.

people.push(Student.new(name)) Jonah. I am a student
, o

}

people.each {|person|
puts person.selfString

}

Ilterators

Dh hAan
#Python

Rubpy

def init (self, data): —
.data = data ar\r‘ay [1’ 2’ 3’ 4’ 5]

.index 0

def _iter_(self): array.each | 1]

1
def next (self):

.index < len(.data):
result .data[.index]
.index 1
result

StopIteration
my iterator = MyIterator(”

i my iterator:
print(1)

Exception Handling

[1 myNumbers
10 System.out.

System.out.

System.out.

y - -
Python

result 10 %)
ZeroDivisionError:
print(”“Canr 1vi

print("This

Summary

Ruby’s popularity was largely
due to its novelty at the time of
its release

Modern developments in
JavaScript and Python caused a
paradigm shift

References

- https://www.ruby-lang.org/en/about/

- https://www.techotopia.com/index.php/Ruby_Essentials

- https://www.manning.com/books/the-well-grounded-rubyist

- https://www.rubyguides.com

- https://ruby-doc.org

- https://www.infoworld.com/article/3687219/whatever-happened-to-ruby.html

https://www.ruby-lang.org/en/about/
https://www.techotopia.com/index.php/Ruby_Essentials
https://www.manning.com/books/the-well-grounded-rubyist
https://www.rubyguides.com
https://ruby-doc.org
https://www.infoworld.com/article/3687219/whatever-happened-to-ruby.html

