CSC 533: Programming Languages
Spring 2018

Concurrency

= levels of concurrency
= synchronization
competition vs. cooperation, race conditions
= synchronization mechanisms
semaphores, monitors, message passing
= concurrency in Java
threads, Thread/Runnable, synchronize

Concurrency

many modern computers utilize multiple processors or multicores
= can speed up processing by executing statements/programs concurrently
» e.g., a Web server may have multiple processors to handle requests
= eg., a Web browser might download/request/render concurrently

concurrency can occur at four levels
= machine instruction level -handled at hardware level
= high-level language statement level
= unit (subprogram) level
= program level — handled at OS level

concurrency can be
= physical - multiple independent processors (multiple threads of control)
= Jogical — even with one processor, can time-share to (e.g., browser tasks)

Subprogram-level concurrency

a task or process or thread is a program unit that can be in concurrent
execution with other program units

tasks differ from ordinary subprograms in that:
= atask may be implicitly started
= when a program unit starts the execution of a task, it is not necessarily suspended
= when a task’s execution is completed, control may not return to the caller

tasks can be:
= heavyweight — each executes in its own address space
= lightweight — all tasks execute in the same address space (more efficient)

since tasks are rarely disjoint, there must be mechanisms for coordinating or
synchronizing tasks

Cooperation synchronization

sometimes, tasks must cooperate

= task A must wait for task B to complete some activity before it can begin
or continue its execution

= e.g., producer/consumer relationship

task A constantly monitors the keyboard, reading each new input and
storing in a buffer

- can't store if the buffer is full

task B constantly monitors the buffer, accesses each new input and
removes from the buffer

- can't access if the buffer is empty

Competition synchronization

sometimes tasks compete for resources

= tasks A and B both require access to a non-shareable resource — must
prevent simultaneous access to preserve integrity

= e.g., suppose tasks A & B access a shared variable TOTAL
Aexecutes TOTAL += 1; B executes TOTAL *= 2;
at the machine-language level, each assignment involves 3 steps:
1. fetch the value of TOTAL

2. perform the operation
3. store the resultin TOTAL

Race condition

if the shared variable can be accessed "simultaneously," the
interleaving of steps can produce different results

. B fetches TOTAL (3) . B fetches TOTAL (3)
. A fetches TOTAL (3) . B performs operation (6) are other results
. B performs operation (6) . B stores TOTAL (6) pOSSib|e7

. A fetches TOTAL (6)
. A performs operation (7)
. A stores TOTAL (7)

. A performs operation (4)
. B stores TOTAL (6)
. A stores TOTAL (4)

AN N AN =

AN AW N =

. A fetches TOTAL (3)
. B fetches TOTAL (3)
. A performs operation (4)

. A fetches TOTAL (3)

. A performs operation (4)
. A stores TOTAL (4)

. B fetches TOTAL (4)

. B performs operation (8)
. B stores TOTAL (8)

. B performs operation (6)
. A stores TOTAL (4)
. B stores TOTAL (6)

AN AW =

AN AW N =

Synchronization mechanisms

3 methods for providing mutually exclusive access to a resource

1. semaphores
— early, simple approach (Dijkstra, 1965)

2. monitors
- incorporates data abstraction (Brinch Hansen, 1973)

3. message passing
— utilizes rendezvous messages (Brinch Hansen and Hoare, 1978)
(see text for examples - will not discuss here)

Semaphores

a semaphore is a data structure consisting of a counter and a queue for
storing task descriptors
= counter represents a number of available resources (initially some N)
= queue represents tasks waiting for resources (initially empty)

= wait operation: allocate resource if available, else enqueue the task
= release: deallocate the resource, reassign to a task if waiting

wait (aSemaphore) release (aSemaphore)
if aSemaphore’s counter > 0 then if aSemaphore’ queue is empty (no task is waiting) then
decrement aSemaphore’ counter increment aSemaphore’s counter
else else
put the caller in aSemaphore’s queue put the calling task in the task-ready queue
attempt to transfer control to some ready task transfer control to a task from aSemaphore’s queue
(if the task ready queue is empty, deadlock occurs) | | end
end if

= can be used for both competition and cooperation synchronization

Semaphores for competition synchronization

semaphore access;
access.count = 1;

task A;
wait (access);
TOTAL += 1;
release (access) ;
end A;
task B;
wait (access);
TOTAL *= 2;

release (access) ;

end B;

{wait for access}

{relinquish access}

{wait for access}

{relinquish access}

wait & release must be
implemented as single
machine instructions

WHY?

Semaphores for cooperation synchronization

semaphore fullspots,

fullspots.count =

emptyspots;
0;

emptyspots.count = BUFLEN;

task producer;
loop

-- produce VALUE --

wait
DEPOSIT (VALUE) ;

release (fullspots) ;

end loop;
end producer;

task consumer;
loop
wait
FETCH (VALUE) ;

release (emptyspots) ;

(emptyspots) ;

{wait for space}

—-—- consume VALUE --

end loop;
end consumer;

java.util.concurrent.Semaphore
defines a Semaphore class with
acquire & release methods

{increase filled}

{increase empty}

(fullspots);{wait till not empty}}

Evaluation of semaphores

assuming they are indivisible, wait & release can be used to provide
competition and cooperation synchronization

however, the programmer must use them correctly
= forgetting to wait can lead to mutual access
= forgetting to release can lead to deadlock (infinite waiting)

= for producer/consumer, can lead to buffer overflow or underflow

"The semaphore is an elegant synchronization tool for an ideal programmer
who never makes mistakes." (Brinch Hansen, 1978)

Monitors

a monitor is an abstract data type that encapsulate the shared data and
its operations
= originally implemented in Concurrent Pascal (1975)
= supported by Java, Ada, C#, ...

since the shared data is resident in the monitor (rather than in the client
code), monitor operations can control access

= monitor implementation guarantees synchronized access by allowing only one
access ata time

= calls to monitor procedures are implicitly queued if the monitor is busy at the time of
the call

Java automatically associates a monitor with each object
= can force mutual exclusion by declaring methods to be synchronized

Example: producer/consumer in Java

Java supports concurrency via threads (lightweight processes)
" public static void main automatically spawns a thread

= users can create additional threads by extending the Thread class (or by
implementing the Runnab1e interface)

= aThread class must override run (), which specifies the action of that

thread

class Producer extends Thread {
private Buffer buffer;

Producer (Buffer b) {
this.buffer = b;
}

public void run() {
for (int t = 1; t <= 10; t++) {
System.out.println("Produced task " +
t);
this.buffer.put(t);
}

class Consumer extends Thread {
private Buffer buffer;

Consumer (Buffer b) {
this.buffer = b;
}

public void run() {
for (int i = 1; i <= 10; 1i++) {
int t = this.buffer.get();
System.out.println("Consuming task " + t);

}

here, Buffer contains an array of ints

public class Buffer {
private int [] buffer;
private int numStored, putIndex, getIndex;

public Buffer (int size) {
this.buffer = new int[size];

}
public synchronized void put(int task) {

try { wait(); }

catch (InterruptedException e) { }
}
this.buffer[this.putIndex] = task;
this.putIndex =

this.numStored++;
notify();
}

public synchronized int get() {
while (this.numStored == 0) {
try { wait(); }
catch (InterruptedException e) { }
}
int task = this.buffer[this.getIndex];
this.getIndex =

this.numStored--;
notify();
return task;

while (this.numStored == this.buffer.length)

(this.putIndex + 1) % this.buffer.length;

(this.getIndex + 1) % this.buffer.length;

= will treat as a circular queue

= putIndex Wil keep track of next place
to put a value (wraps around)

= getIndex Wil keep track of next place
to get a value (wraps around)

= numStored keeps track of number

(currently stored

useful Thread methods
= start() spawnsthethread (i.e., calls
its run method)
= wait () suspends the current thread
(and releases the monitor)
= notify() wakes up a thread waiting
for the monitor

public static void main(String [] args)
{
Buffer b = new Buffer(4);
Producer p new Producer (b);
Consumer c new Consumer (b) ;

Example: summing an array
consider the task of summing all of the numbers in an array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nums |22 |18 |12 -4 [27|30|36 |50 7 |68 |91 |56 2 85|42]98]

public static int sum(int[] nums) {
int total = 0;
for (int i = 0; 1 < nums.length; i++) {
total += nums[i];
}

return total;

= brute force algorithm is O(N), so doubling the size doubles the time

Example: summing an array
if we had 2 CPUs/cores, could sum each half separately, then combine

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nums |22 |18 |12 -4 [27|30|36 |50 7 |68 |91 |56 2 85|42]98]

N N\ _/
— —
suml = 22+18+12+-4+27+30+36+50 =191 sum2 = 7+68+91+56+2+85+42+98 = 449
N _/
—

sum =suml + sum2 = 640

= note: still O(N), but reduces the constant BY HOW MUCH?

Example: summing an array

public class SumThread extends Thread {
private int[] nums;
private int minIndex;
private int maxIndex;
private int computedSum;

public SumThread (int[]
this.nums = nums;
this.minIndex = minIndex;
this.maxIndex = maxIndex;
this.computedSum = 0;

nums, int minIndex,

}

public int getSum() {
return this.computedSum;

}

this.computedSum += this.nums[i];

}

int maxIndex) {

note: the run method does not have
any parameters

= must store needed values in
fields when construct the thread

= can have other methods as well

public void run() {
this.computedSum = 0;
for (int i = this.minIndex; i < this.maxIndex;

it+) |

Example: summing an array

public class ArraySum {

public static int sumConcurrently (int[] a,

int total = 0;

for (Thread summer :
total +=

}

return total;

threads) {
((SumThread) summer) .getSum() ;

Math.min ((i+1) *1len,

int len = (int) Math.ceil (1.0 * a.length / threadCount);
Thread[] threads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++) {
threads[i] = new SumThread(a, i*len,
threads[i].start();
}
try {
for (Thread t : threads) ({
t.join();
}
} catch (InterruptedException ie) {}

int threadCount) {

a.length));

here, the array is divided into
threadCount segments
= each spawns a SumThread
to process

the j01in method coordinates by
forcing the program to wait for each
thread to finish

Example: summing an array

public static void main(String[] args) {
Random randy = new Random() ;
int size = 1000;

System.out.println ("Enter number of threads: ");
Scanner input = new Scanner (System.in);
int numThreads = input.nextInt();

input.close();

while (true) {

int[] nums = new int[size];
for (int j = 0; j < size; Jj++) {
nums [j] = randy.nextInt();
}
long start = System.currentTimeMillis() ;

int total = 0;
for (int j = 1; j <= 1000; j++) |

total = sumConcurrently (nums, numThreads);
}

long end = System.currentTimeMillis();

size *= 2;

sums

driver program prompts for
the number of threads

since timings are so fast,
actually performs 1000

System.out.printf ("%10d elements => %$6d microsec\n", size, end-start);

}
}
19
Enter number of threads:
1
1000 elements => 89 microsec
2000 elements => 91 microsec
4000 elements => 95 microsec
8000 elements => 91 microsec
16000 elements => 109 microsec
32000 elements => 107 microsec
64000 elements => 118 microsec
128000 elements => 137 microsec
256000 elements => 184 microsec
512000 elements => 256 microsec
1024000 elements => 402 microsec
2048000 elements => 858 microsec
4096000 elements => 1691 microsec
8192000 elements => 3125 microsec
16384000 elements => 6062 microsec
32768000 elements => 11836 microsec
65536000 elements => 22726 microsec
131072000 elements => 45429 microsec
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
at ArraySum.main(ArraySum.java:52)
Enter number of threads: Enter number of threads: Enter number of threads:
2 4 8
1000 elements => 143 microsec 1000 elements => 248 microsec 1000 elements 451 microsec
2000 elements => 151 microsec 2000 elements => 277 microsec 2000 elements 561 microsec
4000 elements => 154 microsec 4000 elements => 271 microsec 4000 elements 576 microsec
8000 elements => 168 microsec 8000 elements => 305 microsec 8000 elements 722 microsec
16000 elements => 162 microsec 16000 elements => 386 microsec 16000 elements 807 microsec
32000 elements => 135 microsec 32000 elements => 378 microsec 32000 elements 1159 microsec
64000 elements => 156 microsec 64000 elements => 405 microsec 64000 elements 1829 microsec
128000 elements => 194 microsec 128000 elements => 523 microsec 128000 elements 2064 microsec
256000 elements => 218 microsec 256000 elements => 499 microsec 256000 elements 2096 microsec
512000 elements => 288 microsec 512000 elements => 666 microsec 512000 elements 2481 microsec
1024000 elements => 380 microsec 1024000 elements => 907 microsec 1024000 elements 3196 microsec
2048000 elements => 562 microsec 2048000 elements => 855 microsec 2048000 elements 3889 microsec
4096000 elements => 1073 microsec 4096000 elements => 1568 microsec 4096000 elements 3073 microsec
8192000 elements => 1938 microsec 8192000 elements => 2224 microsec 8192000 elements 5509 microsec
16384000 elements => 3618 microsec 16384000 elements => 3929 microsec 16384000 elements 9776 microsec
32768000 elements => 6703 microsec 32768000 elements => 6810 microsec 32768000 elements 13158 microsec
65536000 elements => 13188 microsec 65536000 elements => 13254 microsec 65536000 elements 21601 microsec
131072000 elements => 25243 microsec | | 131072000 elements => 24836 microsec 131072000 elements => 31766 microsec

10

How many threads?
you can find out how many CPUs/cores your machine has

int cores = Runtime.getRuntime () .availableProcessors();
= timings on previous slide were on a computer with 8 cores

= note that a user program may not have access to all cores
- in previous timings, 8 threads actually degraded performance

= there is overhead associated with creating and managing threads
- 1thread was faster than 2 threads up to 1M numbers
- 2threads was faster than 4 threads up to 1B numbers

21

Example: parallel mergeSort

suppose we want to take advantage of multicores when sorting
= have separate threads sort the left and right halves, then merge

0 1 2 3 4 5 6 7
nums | 22 |18 |12 |-4[58] 7 [31]42]
spli
[22]18]12] 4] [s8] 7 [31]42]

ort

sor
[-4]12]18]22] [7 [31]42]58]
merge

[-4]7]12]18]22]31]42]58]

= each of the threads can spawn new threads, up to some limit

22

11

Example: parallel mergeSort

public class SortThread extends Thread {
private int[] nums;
private int minIndex;
private int maxIndex;
private int threadCount;

public SortThread(int[] nums, int minIndex, int maxIndex, int threadCount)
this.nums = nums;
this.minIndex = minIndex;
this.maxIndex = maxIndex;
this.threadCount = threadCount;

public void run() {
MergeSort.mergeSortConcurrently (this.nums, this.minIndex,
this.maxIndex, this.threadCount);

{

23
Example: parallel mergeSort
public class MergeSort {
public static void mergeSortConcurrently(int[] a, int threadCount) {
MergeSort.mergeSortConcurrently(a, 0, a.length-1, threadCount);
}
public static void mergeSortConcurrently(int[] a, int minIndex, int maxIndex,
int threadCount) {
if (minIndex < maxIndex) {
int mid = (minIndex+maxIndex)/2;
if (threadCount > 1) {
Thread leftThread = new SortThread(a, minIndex, mid, threadCount/2);
Thread rightThread = new SortThread(a, mid+l, maxIndex, threadCount/2);
leftThread.start () ;
rightThread.start () ;
try f
leftThread.join () ;
rightThread.join();
} catch (InterruptedException ie) {}
}
else {
MergeSort.mergeSortConcurrently(a, minIndex, mid, threadCount/2);
MergeSort.mergeSortConcurrently(a, mid+l, maxIndex, threadCount/2);
}
MergeSort.merge (a, minIndex, maxIndex);
}
} 24

12

Example: parallel mergeSort

public static void main(String[] args) {

Random randy = new Random() ;
int size = 1000;

System.out.println ("Enter the thread limit: ");
Scanner input = new Scanner (System.in);

int numThreads = input.nextInt();
input.close();

while (true) {

int[] nums = new int[size];
for (int j = 0; j < size; Jj++) {
nums [j] = randy.nextInt();
}
long start = System.currentTimeMillis() ;

MergeSort.mergeSortConcurrently (nums, numThreads)
long end = System.currentTimeMillis();

System.out.printf ("$10d elements => %6d ms \n",
size *= 2;

size, end-start);

25
Enter the thread limit:
1
1000 elements => 2 ms
2000 elements => 2 ms
4000 elements => 1ms
8000 elements => 1ms
16000 elements => 2 ms
32000 elements => 5ms
64000 elements => 10 ms
128000 elements => 20 ms
256000 elements => 36 ms
512000 elements => 76 ms
1024000 elements => 162 ms
2048000 elements => 340 ms
4096000 elements => 695 ms
8192000 elements => 1428 ms
16384000 elements => 2895 ms
32768000 elements => 5988 ms
65536000 elements => 12479 ms
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
Enter the thread limit: Enter the thread limit: Enter the thread limit:
2 4 8
1000 elements => 1ms 1000 elements => 2 ms 1000 elements => 3 ms
2000 elements => 1ms 2000 elements => 2 ms 2000 elements => 3 ms
4000 elements => 1ms 4000 elements => 2 ms 4000 elements => 2 ms
8000 elements => 3 ms 8000 elements => 2 ms 8000 elements => 4 ms
16000 elements => 3 ms 16000 elements => 4 ms 16000 elements => 3 ms
32000 elements => 7 ms 32000 elements => 6 ms 32000 elements => 5 ms
64000 elements => 14 ms 64000 elements => 14 ms 64000 elements => 9 ms
128000 elements => 17 ms 128000 elements => 21 ms| 128000 elements => 18 ms
256000 elements => 22 ms 256000 elements => 14 ms 256000 elements => 30 ms
512000 elements => 47 ms 512000 elements => 43 ms 512000 elements => 29 ms
1024000 elements => 103 ms 1024000 elements => 73 ms 1024000 elements => 62 ms
2048000 elements => 197 ms 2048000 elements => 136 ms 2048000 elements => 114 ms
4096000 elements => 392 ms 4096000 elements => 252 ms 4096000 elements => 205 ms
8192000 elements => 790 ms 8192000 elements => 515 ms 8192000 elements => 401 ms
16384000 elements => 1593 ms 16384000 elements => 1055 ms 16384000 elements => 804 ms
32768000 elements => 3327 ms 32768000 elements => 2232 ms 32768000 elements => 1725 ms
65536000 elements => 6681 ms 65536000 elements => 4193 ms 65536000 elements => 3303 ms

13

Amdanhl's Law

the speedup that can be achieved by parallelizing a program is limited by the
sequential fraction of the program
= if P is the proportion that is parallelizable and N is the # of processors,
max speedup = 1/((1-P)+(P/N))

= e.g., ifonly 75% of the program can run in parallel, you can only get a 4x speedup
(no matter how many processors)

Amdahl's Law

18.00 // | |

Parallel Portion
16.00 ——50% .
—75%
14.00 ——90% 4
——95%

Speedup
s
g

Number of Processors. 27

