
1

1

CSC 533: Programming Languages

Spring 2018

Concurrency

§ levels of concurrency
§ synchronization

competition vs. cooperation, race conditions
§ synchronization mechanisms

semaphores, monitors, message passing
§ concurrency in Java

threads, Thread/Runnable, synchronize

Concurrency

many modern computers utilize multiple processors or multicores
§ can speed up processing by executing statements/programs concurrently
§ e.g., a Web server may have multiple processors to handle requests
§ e.g., a Web browser might download/request/render concurrently

concurrency can occur at four levels
§ machine instruction level –handled at hardware level
§ high-level language statement level

§ unit (subprogram) level

§ program level – handled at OS level

concurrency can be
§ physical - multiple independent processors (multiple threads of control)
§ logical – even with one processor, can time-share to (e.g., browser tasks)

2

2

Subprogram-level concurrency

a task or process or thread is a program unit that can be in concurrent
execution with other program units

tasks differ from ordinary subprograms in that:
§ a task may be implicitly started
§ when a program unit starts the execution of a task, it is not necessarily suspended
§ when a task’s execution is completed, control may not return to the caller

tasks can be:
§ heavyweight – each executes in its own address space
§ lightweight – all tasks execute in the same address space (more efficient)

since tasks are rarely disjoint, there must be mechanisms for coordinating or
synchronizing tasks

3

Cooperation synchronization

sometimes, tasks must cooperate
§ task A must wait for task B to complete some activity before it can begin

or continue its execution

§ e.g., producer/consumer relationship

task A constantly monitors the keyboard, reading each new input and
storing in a buffer

– can't store if the buffer is full

task B constantly monitors the buffer, accesses each new input and
removes from the buffer

– can't access if the buffer is empty

4

3

Competition synchronization

sometimes tasks compete for resources
§ tasks A and B both require access to a non-shareable resource – must

prevent simultaneous access to preserve integrity

§ e.g., suppose tasks A & B access a shared variable TOTAL

A executes TOTAL += 1; B executes TOTAL *= 2;

at the machine-language level, each assignment involves 3 steps:
1. fetch the value of TOTAL
2. perform the operation
3. store the result in TOTAL

5

Race condition

if the shared variable can be accessed "simultaneously," the
interleaving of steps can produce different results

6

1. A fetches TOTAL (3)
2. A performs operation (4)
3. A stores TOTAL (4)
4. B fetches TOTAL (4)
5. B performs operation (8)
6. B stores TOTAL (8)

1. A fetches TOTAL (3)
2. B fetches TOTAL (3)
3. A performs operation (4)
4. B performs operation (6)
5. A stores TOTAL (4)
6. B stores TOTAL (6)

1. B fetches TOTAL (3)
2. B performs operation (6)
3. B stores TOTAL (6)
4. A fetches TOTAL (6)
5. A performs operation (7)
6. A stores TOTAL (7)

1. B fetches TOTAL (3)
2. A fetches TOTAL (3)
3. B performs operation (6)
4. A performs operation (4)
5. B stores TOTAL (6)
6. A stores TOTAL (4)

are other results
possible?

4

Synchronization mechanisms

3 methods for providing mutually exclusive access to a resource

1. semaphores
– early, simple approach (Dijkstra, 1965)

2. monitors
– incorporates data abstraction (Brinch Hansen, 1973)

3. message passing
– utilizes rendezvous messages (Brinch Hansen and Hoare, 1978)

(see text for examples - will not discuss here)

7

Semaphores

a semaphore is a data structure consisting of a counter and a queue for
storing task descriptors
§ counter represents a number of available resources (initially some N)
§ queue represents tasks waiting for resources (initially empty)

§ wait operation: allocate resource if available, else enqueue the task
§ release: deallocate the resource, reassign to a task if waiting

§ can be used for both competition and cooperation synchronization
8

5

Semaphores for competition synchronization
semaphore access;
access.count = 1;

task A;
…
wait(access); {wait for access}
TOTAL += 1;
release(access); {relinquish access}
…

end A;

task B;
…
wait(access); {wait for access}
TOTAL *= 2;
release(access); {relinquish access}
…

end B;

9

wait & release must be
implemented as single
machine instructions
WHY?

Semaphores for cooperation synchronization
semaphore fullspots, emptyspots;
fullspots.count = 0;
emptyspots.count = BUFLEN;

task producer;
loop
-- produce VALUE –-
wait (emptyspots); {wait for space}
DEPOSIT(VALUE);
release(fullspots); {increase filled}
end loop;

end producer;

task consumer;
loop
wait (fullspots);{wait till not empty}}
FETCH(VALUE);
release(emptyspots); {increase empty}
-- consume VALUE –-
end loop;

end consumer;
10

java.util.concurrent.Semaphore
defines a Semaphore class with
acquire & release methods

6

Evaluation of semaphores

assuming they are indivisible, wait & release can be used to provide
competition and cooperation synchronization

however, the programmer must use them correctly
§ forgetting to wait can lead to mutual access

§ forgetting to release can lead to deadlock (infinite waiting)

§ for producer/consumer, can lead to buffer overflow or underflow

"The semaphore is an elegant synchronization tool for an ideal programmer
who never makes mistakes." (Brinch Hansen, 1978)

11

Monitors

a monitor is an abstract data type that encapsulate the shared data and
its operations
§ originally implemented in Concurrent Pascal (1975)
§ supported by Java, Ada, C#, …

since the shared data is resident in the monitor (rather than in the client
code), monitor operations can control access
§ monitor implementation guarantees synchronized access by allowing only one

access at a time
§ calls to monitor procedures are implicitly queued if the monitor is busy at the time of

the call

Java automatically associates a monitor with each object
§ can force mutual exclusion by declaring methods to be synchronized

12

7

Example: producer/consumer in Java

Java supports concurrency via threads (lightweight processes)
§ public static void main automatically spawns a thread
§ users can create additional threads by extending the Thread class (or by

implementing the Runnable interface)

§ a Thread class must override run(), which specifies the action of that
thread

13

class Producer extends Thread {
private Buffer buffer;

Producer(Buffer b) {
this.buffer = b;

}

public void run() {
for (int t = 1; t <= 10; t++) {

System.out.println("Produced task " +
t);

this.buffer.put(t);
}

}
}

class Consumer extends Thread {
private Buffer buffer;

Consumer(Buffer b) {
this.buffer = b;

}

public void run() {
for (int i = 1; i <= 10; i++) {

int t = this.buffer.get();
System.out.println("Consuming task " + t);

}
}

}

here, Buffer contains an array of ints
§ will treat as a circular queue
§ putIndex will keep track of next place

to put a value (wraps around)
§ getIndex will keep track of next place

to get a value (wraps around)
§ numStored keeps track of number

currently stored

useful Thread methods
§ start() spawns the thread (i.e., calls

its run method)
§ wait() suspends the current thread

(and releases the monitor)
§ notify() wakes up a thread waiting

for the monitor

14

public class Buffer {
private int [] buffer;
private int numStored, putIndex, getIndex;

public Buffer(int size) {
this.buffer = new int[size];

}

public synchronized void put(int task) {
while(this.numStored == this.buffer.length) {

try { wait(); }
catch (InterruptedException e) { }

}
this.buffer[this.putIndex] = task;
this.putIndex =

(this.putIndex + 1) % this.buffer.length;
this.numStored++;
notify();

}

public synchronized int get() {
while (this.numStored == 0) {

try { wait(); }
catch (InterruptedException e) { }

}
int task = this.buffer[this.getIndex];
this.getIndex =

(this.getIndex + 1) % this.buffer.length;
this.numStored--;
notify();
return task;

}

public static void main(String [] args)
{

Buffer b = new Buffer(4);
Producer p = new Producer(b);
Consumer c = new Consumer(b);

p.start();
c.start();

}
}

8

Example: summing an array

consider the task of summing all of the numbers in an array

public static int sum(int[] nums) {
int total = 0;
for (int i = 0; i < nums.length; i++) {

total += nums[i];
}
return total;

}

§ brute force algorithm is O(N), so doubling the size doubles the time

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nums 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98

Example: summing an array

if we had 2 CPUs/cores, could sum each half separately, then combine

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nums 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98

sum1	=	22+18+12+-4+27+30+36+50	=	191 sum2	=	7+68+91+56+2+85+42+98	=	449

sum	=	sum1	+	sum2	=	640

§ note: still O(N), but reduces the constant BY HOW MUCH?

9

Example: summing an array
public class SumThread extends Thread {
private int[] nums;
private int minIndex;
private int maxIndex;
private int computedSum;

public SumThread(int[] nums, int minIndex, int maxIndex) {
this.nums = nums;
this.minIndex = minIndex;
this.maxIndex = maxIndex;
this.computedSum = 0;

}

public int getSum() {
return this.computedSum;

}

public void run() {
this.computedSum = 0;
for (int i = this.minIndex; i < this.maxIndex; i++) {
this.computedSum += this.nums[i];

}
}

}

17

note: the run method does not have
any parameters
§ must store needed values in

fields when construct the thread
§ can have other methods as well

Example: summing an array
public class ArraySum {

public static int sumConcurrently(int[] a, int threadCount) {
int len = (int) Math.ceil(1.0 * a.length / threadCount);
Thread[] threads = new Thread[threadCount];
for (int i = 0; i < threadCount; i++) {
threads[i] = new SumThread(a, i*len, Math.min((i+1)*len, a.length));
threads[i].start();

}
try {
for (Thread t : threads) {
t.join();

}
} catch (InterruptedException ie) {}

int total = 0;
for (Thread summer : threads) {
total += ((SumThread)summer).getSum();

}
return total;

}

. . .

}

18

here, the array is divided into
threadCount segments
§ each spawns a SumThread

to process

the join method coordinates by
forcing the program to wait for each
thread to finish

10

Example: summing an array
public static void main(String[] args) {
Random randy = new Random();
int size = 1000;

System.out.println("Enter number of threads: ");
Scanner input = new Scanner(System.in);
int numThreads = input.nextInt();
input.close();

while (true) {
int[] nums = new int[size];
for (int j = 0; j < size; j++) {
nums[j] = randy.nextInt();

}

long start = System.currentTimeMillis();
int total = 0;
for (int j = 1; j <= 1000; j++) {
total = sumConcurrently(nums, numThreads);

}
long end = System.currentTimeMillis();

System.out.printf("%10d elements => %6d microsec\n", size, end-start);
size *= 2;

}
}

19

driver program prompts for
the number of threads

since timings are so fast,
actually performs 1000
sums

20

11

How many threads?

you can find out how many CPUs/cores your machine has

int cores = Runtime.getRuntime().availableProcessors();

§ timings on previous slide were on a computer with 8 cores

§ note that a user program may not have access to all cores
– in previous timings, 8 threads actually degraded performance

§ there is overhead associated with creating and managing threads
– 1 thread was faster than 2 threads up to 1M numbers
– 2 threads was faster than 4 threads up to 1B numbers

21

Example: parallel mergeSort

suppose we want to take advantage of multicores when sorting
§ have separate threads sort the left and right halves, then merge

§ each of the threads can spawn new threads, up to some limit

22

0 1 2 3 4 5 6 7
nums 22 18 12 -4 58 7 31 42

22 18 12 -4 58 7 31 42

split

-4 7 12 18 22 31 42 58

merge

-4 12 18 22 7 31 42 58
sort sort

12

Example: parallel mergeSort

public class SortThread extends Thread {
private int[] nums;
private int minIndex;
private int maxIndex;
private int threadCount;

public SortThread(int[] nums, int minIndex, int maxIndex, int threadCount) {
this.nums = nums;
this.minIndex = minIndex;
this.maxIndex = maxIndex;
this.threadCount = threadCount;

}

public void run() {
MergeSort.mergeSortConcurrently(this.nums, this.minIndex,

this.maxIndex, this.threadCount);
}

}

23

Example: parallel mergeSort
public class MergeSort {
public static void mergeSortConcurrently(int[] a, int threadCount) {
MergeSort.mergeSortConcurrently(a, 0, a.length-1, threadCount);

}

public static void mergeSortConcurrently(int[] a, int minIndex, int maxIndex,
int threadCount) {

if (minIndex < maxIndex) {
int mid = (minIndex+maxIndex)/2;
if (threadCount > 1) {
Thread leftThread = new SortThread(a, minIndex, mid, threadCount/2);
Thread rightThread = new SortThread(a, mid+1, maxIndex, threadCount/2);
leftThread.start();
rightThread.start();

try {
leftThread.join();
rightThread.join();

} catch (InterruptedException ie) {}
}
else {
MergeSort.mergeSortConcurrently(a, minIndex, mid, threadCount/2);
MergeSort.mergeSortConcurrently(a, mid+1, maxIndex, threadCount/2);

}
MergeSort.merge(a, minIndex, maxIndex);

}
} 24

13

Example: parallel mergeSort
public static void main(String[] args) {

Random randy = new Random();
int size = 1000;

System.out.println("Enter the thread limit: ");
Scanner input = new Scanner(System.in);
int numThreads = input.nextInt();
input.close();

while (true) {
int[] nums = new int[size];
for (int j = 0; j < size; j++) {
nums[j] = randy.nextInt();

}

long start = System.currentTimeMillis();
MergeSort.mergeSortConcurrently(nums, numThreads);
long end = System.currentTimeMillis();

System.out.printf("%10d elements => %6d ms \n", size, end-start);
size *= 2;

}
}

25

26

14

Amdahl's Law

27

the speedup that can be achieved by parallelizing a program is limited by the
sequential fraction of the program

§ if P is the proportion that is parallelizable and N is the # of processors,
max speedup = 1/((1-P)+(P/N))

§ e.g., if only 75% of the program can run in parallel, you can only get a 4x speedup
(no matter how many processors)

